BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15576923)

  • 1. Using microfluidic channel networks to generate gradients for studying cell migration.
    Rhoads DS; Nadkarni SM; Song L; Voeltz C; Bodenschatz E; Guan JL
    Methods Mol Biol; 2005; 294():347-57. PubMed ID: 15576923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gradient-generating microfluidic device for cell biology.
    Chung BG; Manbachi A; Saadi W; Lin F; Jeon NL; Khademhosseini A
    J Vis Exp; 2007; (7):271. PubMed ID: 18989442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of complex concentration profiles in microchannels in a logarithmically small number of steps.
    Campbell K; Groisman A
    Lab Chip; 2007 Feb; 7(2):264-72. PubMed ID: 17268630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple haptotactic gradient generation within a triangular microfluidic channel.
    Park J; Kim DH; Kim G; Kim Y; Choi E; Levchenko A
    Lab Chip; 2010 Aug; 10(16):2130-8. PubMed ID: 20532357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation.
    Zhu X; Yi Chu L; Chueh BH; Shen M; Hazarika B; Phadke N; Takayama S
    Analyst; 2004 Nov; 129(11):1026-31. PubMed ID: 15508030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular microfluidics for gradient generation.
    Sun K; Wang Z; Jiang X
    Lab Chip; 2008 Sep; 8(9):1536-43. PubMed ID: 18818810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients.
    Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J
    Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Migration of connective tissue-derived cells is mediated by ultra-low concentration gradient fields of EGF.
    Kong Q; Majeska RJ; Vazquez M
    Exp Cell Res; 2011 Jul; 317(11):1491-502. PubMed ID: 21536028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a microfluidic device for studying the combinatorial effect of physical and chemical cues on cell migration.
    Saxena N; Jadhav S; Sen S
    STAR Protoc; 2021 Mar; 2(1):100310. PubMed ID: 33554144
    [No Abstract]   [Full Text] [Related]  

  • 16. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control.
    Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F
    Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions.
    Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Jul; 13(14):2802-7. PubMed ID: 23670133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics for Protein Biophysics.
    Charmet J; Arosio P; Knowles TPJ
    J Mol Biol; 2018 Mar; 430(5):565-580. PubMed ID: 29289566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels.
    Choi E; Chang HK; Lim CY; Kim T; Park J
    Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.