These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15576923)

  • 41. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On-chip cell migration assay using microfluidic channels.
    Nie FQ; Yamada M; Kobayashi J; Yamato M; Kikuchi A; Okano T
    Biomaterials; 2007 Sep; 28(27):4017-22. PubMed ID: 17583787
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative analysis of Caenorhabditis elegans chemotaxis using a microfluidic device.
    Hu L; Ye J; Tan H; Ge A; Tang L; Feng X; Du W; Liu BF
    Anal Chim Acta; 2015 Aug; 887():155-162. PubMed ID: 26320797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.
    Frank P; Schreiter J; Haefner S; Paschew G; Voigt A; Richter A
    PLoS One; 2016; 11(8):e0161024. PubMed ID: 27571209
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electroosmotic mixing in microchannels.
    Glasgow I; Batton J; Aubry N
    Lab Chip; 2004 Dec; 4(6):558-62. PubMed ID: 15570365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In situ generation of pH gradients in microfluidic devices for biofabrication of freestanding, semi-permeable chitosan membranes.
    Luo X; Berlin DL; Betz J; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2010 Jan; 10(1):59-65. PubMed ID: 20024051
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments.
    Prentice-Mott HV; Chang CH; Mahadevan L; Mitchison TJ; Irimia D; Shah JV
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21006-11. PubMed ID: 24324148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic based single cell microinjection.
    Adamo A; Jensen KF
    Lab Chip; 2008 Aug; 8(8):1258-61. PubMed ID: 18651065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment.
    Wang L; Liu W; Wang Y; Wang JC; Tu Q; Liu R; Wang J
    Lab Chip; 2013 Feb; 13(4):695-705. PubMed ID: 23254684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions.
    Lee K; Kim C; Kim Y; Jung K; Ahn B; Kang JY; Oh KW
    Biomed Microdevices; 2010 Apr; 12(2):297-309. PubMed ID: 20077018
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous generation of gradients with gradually changed slope in a microfluidic device for quantifying axon response.
    Xiao RR; Zeng WJ; Li YT; Zou W; Wang L; Pei XF; Xie M; Huang WH
    Anal Chem; 2013 Aug; 85(16):7842-50. PubMed ID: 23865632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber.
    Keenan TM; Frevert CW; Wu A; Wong V; Folch A
    Lab Chip; 2010 Jan; 10(1):116-22. PubMed ID: 20024059
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrochemical and chemical microfluidic gold etching to generate patterned and gradient substrates for cell adhesion and cell migration.
    Westcott NP; Lamb BM; Yousaf MN
    Anal Chem; 2009 May; 81(9):3297-303. PubMed ID: 19354293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Microfluidic Approach for Studying Piezo Channels.
    Maneshi MM; Gottlieb PA; Hua SZ
    Curr Top Membr; 2017; 79():309-334. PubMed ID: 28728822
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging.
    Vickerman V; Blundo J; Chung S; Kamm R
    Lab Chip; 2008 Sep; 8(9):1468-77. PubMed ID: 18818801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.