These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15576942)

  • 1. CDC25 dual-specificity protein phosphatases: detection and activity measurements.
    Dalal SN; Volkening M
    Methods Mol Biol; 2005; 296():329-44. PubMed ID: 15576942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Role of CDC25 phosphatases in the control of proliferation].
    Davezac N; Ducommun B; Baldin V
    Pathol Biol (Paris); 2000 Apr; 48(3):182-9. PubMed ID: 10858952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphatases and kinases regulating CDC25 activity in the cell cycle: clinical implications of CDC25 overexpression and potential treatment strategies.
    Sur S; Agrawal DK
    Mol Cell Biochem; 2016 May; 416(1-2):33-46. PubMed ID: 27038604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assaying Cdc25 phosphatase activity.
    Hassepass I; Hoffmann I
    Methods Mol Biol; 2004; 281():153-62. PubMed ID: 15220527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDC25A: a rebel within the CDC25 phosphatases family?
    Fernandez-Vidal A; Mazars A; Manenti S
    Anticancer Agents Med Chem; 2008 Dec; 8(8):825-31. PubMed ID: 19075564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous expression and catalytic properties of the C-terminal domain of starfish cdc25 dual-specificity phosphatase, a cell cycle regulator.
    Deshimaru S; Miyake Y; Ohmiya T; Tatsu Y; Endo Y; Yumoto N; Toraya T
    J Biochem; 2002 May; 131(5):705-12. PubMed ID: 11983078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15.
    Sebastian B; Kakizuka A; Hunter T
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3521-4. PubMed ID: 8475101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.
    Uto K; Inoue D; Shimuta K; Nakajo N; Sagata N
    EMBO J; 2004 Aug; 23(16):3386-96. PubMed ID: 15272308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual mode of degradation of Cdc25 A phosphatase.
    Donzelli M; Squatrito M; Ganoth D; Hershko A; Pagano M; Draetta GF
    EMBO J; 2002 Sep; 21(18):4875-84. PubMed ID: 12234927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation.
    Manke IA; Nguyen A; Lim D; Stewart MQ; Elia AE; Yaffe MB
    Mol Cell; 2005 Jan; 17(1):37-48. PubMed ID: 15629715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecule inhibitors of dual specificity protein phosphatases.
    Pestell KE; Ducruet AP; Wipf P; Lazo JS
    Oncogene; 2000 Dec; 19(56):6607-12. PubMed ID: 11426646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases.
    Rudolph J
    Nat Rev Cancer; 2007 Mar; 7(3):202-11. PubMed ID: 17287826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDC25 phosphatases in cancer cells: key players? Good targets?
    Boutros R; Lobjois V; Ducommun B
    Nat Rev Cancer; 2007 Jul; 7(7):495-507. PubMed ID: 17568790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1.
    Zeng Y; Forbes KC; Wu Z; Moreno S; Piwnica-Worms H; Enoch T
    Nature; 1998 Oct; 395(6701):507-10. PubMed ID: 9774107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation and activation of the Xenopus Cdc25 phosphatase in the absence of Cdc2 and Cdk2 kinase activity.
    Izumi T; Maller JL
    Mol Biol Cell; 1995 Feb; 6(2):215-26. PubMed ID: 7787247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitotic phosphatases: no longer silent partners.
    Trinkle-Mulcahy L; Lamond AI
    Curr Opin Cell Biol; 2006 Dec; 18(6):623-31. PubMed ID: 17030123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase.
    Blasina A; de Weyer IV; Laus MC; Luyten WH; Parker AE; McGowan CH
    Curr Biol; 1999 Jan; 9(1):1-10. PubMed ID: 9889122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdc25: mechanisms of checkpoint inhibition and recovery.
    Karlsson-Rosenthal C; Millar JB
    Trends Cell Biol; 2006 Jun; 16(6):285-92. PubMed ID: 16682204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways.
    Ouyang G; Yao L; Ruan K; Song G; Mao Y; Bao S
    Cell Biol Int; 2009 Dec; 33(12):1237-44. PubMed ID: 19732843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.