These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 15578949)
1. Killing the messenger: antisense DNA and siRNA. Nesterova M; Cho-Chung YS Curr Drug Targets; 2004 Nov; 5(8):683-9. PubMed ID: 15578949 [TBL] [Abstract][Full Text] [Related]
2. Antisense DNA and RNA agents against picornaviruses. Lim T; Yuan J; Zhang HM; Sall A; Liu Z; Su Y; Yang D Front Biosci; 2008 May; 13():4707-25. PubMed ID: 18508540 [TBL] [Abstract][Full Text] [Related]
3. Direct comparison of the specificity of gene silencing using antisense oligonucleotides and RNAi. Bilanges B; Stokoe D Biochem J; 2005 Jun; 388(Pt 2):573-83. PubMed ID: 15656792 [TBL] [Abstract][Full Text] [Related]
4. RNAi: a novel antisense technology and its therapeutic potential. Dallas A; Vlassov AV Med Sci Monit; 2006 Apr; 12(4):RA67-74. PubMed ID: 16572063 [TBL] [Abstract][Full Text] [Related]
6. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming. Saetrom P Bioinformatics; 2004 Nov; 20(17):3055-63. PubMed ID: 15201190 [TBL] [Abstract][Full Text] [Related]
8. Challenges for RNAi in vivo. Paroo Z; Corey DR Trends Biotechnol; 2004 Aug; 22(8):390-4. PubMed ID: 15283982 [TBL] [Abstract][Full Text] [Related]
9. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036 [TBL] [Abstract][Full Text] [Related]
10. Gene silencing mediated by small interfering RNAs in mammalian cells. Scherr M; Morgan MA; Eder M Curr Med Chem; 2003 Feb; 10(3):245-56. PubMed ID: 12570711 [TBL] [Abstract][Full Text] [Related]
11. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. Dyer PDR; Shepherd TR; Gollings AS; Shorter SA; Gorringe-Pattrick MAM; Tang CK; Cattoz BN; Baillie L; Griffiths PC; Richardson SCW J Control Release; 2015 Dec; 220(Pt A):316-328. PubMed ID: 26546271 [TBL] [Abstract][Full Text] [Related]
17. Comparison of gene silencing in human vascular cells using small interfering RNAs. Andersen ND; Monahan TS; Malek JY; Jain M; Daniel S; Caron LD; Pradhan L; Ferran C; Logerfo FW J Am Coll Surg; 2007 Mar; 204(3):399-408. PubMed ID: 17324773 [TBL] [Abstract][Full Text] [Related]
18. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Holen T; Amarzguioui M; Babaie E; Prydz H Nucleic Acids Res; 2003 May; 31(9):2401-7. PubMed ID: 12711685 [TBL] [Abstract][Full Text] [Related]
19. Targeting Highly Structured RNA by Cooperative Action of siRNAs and Helper Antisense Oligomers in Living Cells. Dutkiewicz M; Ojdowska A; Kuczynski J; Lindig V; Zeichhardt H; Kurreck J; Ciesiołka J PLoS One; 2015; 10(8):e0136395. PubMed ID: 26308932 [TBL] [Abstract][Full Text] [Related]
20. RNA-targeted therapeutics in cancer clinical trials: Current status and future directions. Barata P; Sood AK; Hong DS Cancer Treat Rev; 2016 Nov; 50():35-47. PubMed ID: 27612280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]