BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15579238)

  • 41. Improving the prediction of HLA class I-binding peptides using a supertype-based method.
    Wang S; Bai Z; Han J; Tian Y; Shang X; Wang L; Li J; Wu Y
    J Immunol Methods; 2014 Mar; 405():109-20. PubMed ID: 24508661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Class I MHC-peptide interaction: structural and functional aspects.
    Ruppert J; Kubo RT; Sidney J; Grey HM; Sette A
    Behring Inst Mitt; 1994 Jul; (94):48-60. PubMed ID: 7998914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.
    Schiewe AJ; Haworth IS
    J Mol Graph Model; 2007 Oct; 26(3):667-75. PubMed ID: 17493854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes at the floor of the peptide-binding groove induce a strong preference for proline at position 3 of the bound peptide: molecular dynamics simulations of HLA-A*0217.
    Toh H; Savoie CJ; Kamikawaji N; Muta S; Sasazuki T; Kuhara S
    Biopolymers; 2000 Oct; 54(5):318-27. PubMed ID: 10935972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A set of new amino acid descriptors applied in prediction of MHC class I binding peptides.
    Liang G; Yang L; Chen Z; Mei H; Shu M; Li Z
    Eur J Med Chem; 2009 Mar; 44(3):1144-54. PubMed ID: 18662841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of cytotoxic T lymphocyte epitopes in dengue virus serotype 1.
    Duan Z; Guo J; Huang X; Liu H; Chen X; Jiang M; Wen J
    J Med Virol; 2015 Jul; 87(7):1077-89. PubMed ID: 25777343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anchor profiles of HLA-specific peptides: analysis by a novel affinity scoring method and experimental validation.
    Desmet J; Meersseman G; Boutonnet N; Pletinckx J; De Clercq K; Debulpaep M; Braeckman T; Lasters I
    Proteins; 2005 Jan; 58(1):53-69. PubMed ID: 15526297
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence.
    Nielsen M; Lundegaard C; Blicher T; Lamberth K; Harndahl M; Justesen S; Røder G; Peters B; Sette A; Lund O; Buus S
    PLoS One; 2007 Aug; 2(8):e796. PubMed ID: 17726526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays.
    Sette A; Sidney J; del Guercio MF; Southwood S; Ruppert J; Dahlberg C; Grey HM; Kubo RT
    Mol Immunol; 1994 Aug; 31(11):813-22. PubMed ID: 8047072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extensive alanine substitutions increase binding affinity of an influenza nucleoprotein peptide to HLA-Aw68 and do not abrogate peptide-specific CTL recognition.
    Collins EJ; Booth BL; Cerundolo V
    J Immunol; 1999 Jan; 162(1):331-7. PubMed ID: 9886403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative approaches to computational vaccinology.
    Doytchinova IA; Flower DR
    Immunol Cell Biol; 2002 Jun; 80(3):270-9. PubMed ID: 12067414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Class II MHC quantitative binding motifs derived from a large molecular database with a versatile iterative stepwise discriminant analysis meta-algorithm.
    Mallios RR
    Bioinformatics; 1999 Jun; 15(6):432-9. PubMed ID: 10383468
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative prediction of class I MHC/epitope binding affinity using QSAR modeling derived from amino acid structural information.
    Wang Y; Zhou P; Lin Y; Shu M; Hu Y; Xia Q; Lin Z
    Comb Chem High Throughput Screen; 2015; 18(1):75-82. PubMed ID: 25612766
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of binding to MHC class I molecules.
    Adams HP; Koziol JA
    J Immunol Methods; 1995 Sep; 185(2):181-90. PubMed ID: 7561128
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).
    Li Z; Wu S; Chen Z; Ye N; Yang S; Liao C; Zhang M; Yang L; Mei H; Yang Y; Zhao N; Zhou Y; Zhou P; Xiong Q; Xu H; Liu S; Ling Z; Chen G; Li G
    Sci China C Life Sci; 2007 Oct; 50(5):706-16. PubMed ID: 17879071
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach.
    Buus S; Lauemøller SL; Worning P; Kesmir C; Frimurer T; Corbet S; Fomsgaard A; Hilden J; Holm A; Brunak S
    Tissue Antigens; 2003 Nov; 62(5):378-84. PubMed ID: 14617044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward prediction of binding affinities between the MHC protein and its peptide ligands using quantitative structure-affinity relationship approach.
    Tian F; Lv F; Zhou P; Yang Q; Jalbout AF
    Protein Pept Lett; 2008; 15(10):1033-43. PubMed ID: 19075812
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peptide Antibodies: Past, Present, and Future.
    Houen G
    Methods Mol Biol; 2015; 1348():1-6. PubMed ID: 26424257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HLaffy: estimating peptide affinities for Class-1 HLA molecules by learning position-specific pair potentials.
    Mukherjee S; Bhattacharyya C; Chandra N
    Bioinformatics; 2016 Aug; 32(15):2297-305. PubMed ID: 27153594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I.
    Andrade-Ochoa S; García-Machorro J; Bello M; Rodríguez-Valdez LM; Flores-Sandoval CA; Correa-Basurto J
    J Biomol Struct Dyn; 2018 Jul; 36(9):2312-2330. PubMed ID: 28738755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.