These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
835 related articles for article (PubMed ID: 15579309)
1. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Sitara D; Razzaque MS; Hesse M; Yoganathan S; Taguchi T; Erben RG; Jüppner H; Lanske B Matrix Biol; 2004 Nov; 23(7):421-32. PubMed ID: 15579309 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of human PHEX under the human beta-actin promoter does not fully rescue the Hyp mouse phenotype. Erben RG; Mayer D; Weber K; Jonsson K; Jüppner H; Lanske B J Bone Miner Res; 2005 Jul; 20(7):1149-60. PubMed ID: 15940367 [TBL] [Abstract][Full Text] [Related]
3. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Liu S; Tang W; Zhou J; Vierthaler L; Quarles LD Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1636-44. PubMed ID: 17848631 [TBL] [Abstract][Full Text] [Related]
4. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Bowe AE; Finnegan R; Jan de Beur SM; Cho J; Levine MA; Kumar R; Schiavi SC Biochem Biophys Res Commun; 2001 Jun; 284(4):977-81. PubMed ID: 11409890 [TBL] [Abstract][Full Text] [Related]
5. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Larsson T; Marsell R; Schipani E; Ohlsson C; Ljunggren O; Tenenhouse HS; Jüppner H; Jonsson KB Endocrinology; 2004 Jul; 145(7):3087-94. PubMed ID: 14988389 [TBL] [Abstract][Full Text] [Related]
6. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Quarles LD Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E1-9. PubMed ID: 12791601 [TBL] [Abstract][Full Text] [Related]
7. Novel regulators of phosphate homeostasis and bone metabolism. Jüppner H Ther Apher Dial; 2007 Oct; 11 Suppl 1():S3-22. PubMed ID: 17976082 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model. Nakatani T; Ohnishi M; Razzaque MS FASEB J; 2009 Nov; 23(11):3702-11. PubMed ID: 19584304 [TBL] [Abstract][Full Text] [Related]
9. New insights into phosphate homeostasis: fibroblast growth factor 23 and frizzled-related protein-4 are phosphaturic factors derived from tumors associated with osteomalacia. Kumar R Curr Opin Nephrol Hypertens; 2002 Sep; 11(5):547-53. PubMed ID: 12187320 [TBL] [Abstract][Full Text] [Related]
10. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. Jonsson KB; Zahradnik R; Larsson T; White KE; Sugimoto T; Imanishi Y; Yamamoto T; Hampson G; Koshiyama H; Ljunggren O; Oba K; Yang IM; Miyauchi A; Econs MJ; Lavigne J; Jüppner H N Engl J Med; 2003 Apr; 348(17):1656-63. PubMed ID: 12711740 [TBL] [Abstract][Full Text] [Related]
11. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. Yuan B; Takaiwa M; Clemens TL; Feng JQ; Kumar R; Rowe PS; Xie Y; Drezner MK J Clin Invest; 2008 Feb; 118(2):722-34. PubMed ID: 18172553 [TBL] [Abstract][Full Text] [Related]
12. A novel Phex mutation in a new mouse model of hypophosphatemic rickets. Owen C; Chen F; Flenniken AM; Osborne LR; Ichikawa S; Adamson SL; Rossant J; Aubin JE J Cell Biochem; 2012 Jul; 113(7):2432-41. PubMed ID: 22573557 [TBL] [Abstract][Full Text] [Related]
13. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Rowe PS Crit Rev Eukaryot Gene Expr; 2012; 22(1):61-86. PubMed ID: 22339660 [TBL] [Abstract][Full Text] [Related]
14. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. Barros NM; Hoac B; Neves RL; Addison WN; Assis DM; Murshed M; Carmona AK; McKee MD J Bone Miner Res; 2013 Mar; 28(3):688-99. PubMed ID: 22991293 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. Liu S; Guo R; Tu Q; Quarles LD J Biol Chem; 2002 Feb; 277(5):3686-97. PubMed ID: 11713245 [TBL] [Abstract][Full Text] [Related]
16. FGF23 and disorders of phosphate homeostasis. Yu X; White KE Cytokine Growth Factor Rev; 2005 Apr; 16(2):221-32. PubMed ID: 15863037 [TBL] [Abstract][Full Text] [Related]
17. Pathogenic role of Fgf23 in Hyp mice. Liu S; Zhou J; Tang W; Jiang X; Rowe DW; Quarles LD Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E38-49. PubMed ID: 16449303 [TBL] [Abstract][Full Text] [Related]
18. What have we learnt about the regulation of phosphate metabolism? Blumsohn A Curr Opin Nephrol Hypertens; 2004 Jul; 13(4):397-401. PubMed ID: 15199289 [TBL] [Abstract][Full Text] [Related]
19. Osteocyte-specific deletion of Fgfr1 suppresses FGF23. Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice. Martin A; David V; Li H; Dai B; Feng JQ; Quarles LD Mol Endocrinol; 2012 Nov; 26(11):1883-95. PubMed ID: 22930691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]