BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

833 related articles for article (PubMed ID: 15579309)

  • 1. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice.
    Sitara D; Razzaque MS; Hesse M; Yoganathan S; Taguchi T; Erben RG; Jüppner H; Lanske B
    Matrix Biol; 2004 Nov; 23(7):421-32. PubMed ID: 15579309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of human PHEX under the human beta-actin promoter does not fully rescue the Hyp mouse phenotype.
    Erben RG; Mayer D; Weber K; Jonsson K; Jüppner H; Lanske B
    J Bone Miner Res; 2005 Jul; 20(7):1149-60. PubMed ID: 15940367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice.
    Liu S; Tang W; Zhou J; Vierthaler L; Quarles LD
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1636-44. PubMed ID: 17848631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate.
    Bowe AE; Finnegan R; Jan de Beur SM; Cho J; Levine MA; Kumar R; Schiavi SC
    Biochem Biophys Res Commun; 2001 Jun; 284(4):977-81. PubMed ID: 11409890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis.
    Larsson T; Marsell R; Schipani E; Ohlsson C; Ljunggren O; Tenenhouse HS; Jüppner H; Jonsson KB
    Endocrinology; 2004 Jul; 145(7):3087-94. PubMed ID: 14988389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization.
    Quarles LD
    Am J Physiol Endocrinol Metab; 2003 Jul; 285(1):E1-9. PubMed ID: 12791601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel regulators of phosphate homeostasis and bone metabolism.
    Jüppner H
    Ther Apher Dial; 2007 Oct; 11 Suppl 1():S3-22. PubMed ID: 17976082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of klotho function induces hyperphosphatemia even in presence of high serum fibroblast growth factor 23 levels in a genetically engineered hypophosphatemic (Hyp) mouse model.
    Nakatani T; Ohnishi M; Razzaque MS
    FASEB J; 2009 Nov; 23(11):3702-11. PubMed ID: 19584304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into phosphate homeostasis: fibroblast growth factor 23 and frizzled-related protein-4 are phosphaturic factors derived from tumors associated with osteomalacia.
    Kumar R
    Curr Opin Nephrol Hypertens; 2002 Sep; 11(5):547-53. PubMed ID: 12187320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia.
    Jonsson KB; Zahradnik R; Larsson T; White KE; Sugimoto T; Imanishi Y; Yamamoto T; Hampson G; Koshiyama H; Ljunggren O; Oba K; Yang IM; Miyauchi A; Econs MJ; Lavigne J; Jüppner H
    N Engl J Med; 2003 Apr; 348(17):1656-63. PubMed ID: 12711740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia.
    Yuan B; Takaiwa M; Clemens TL; Feng JQ; Kumar R; Rowe PS; Xie Y; Drezner MK
    J Clin Invest; 2008 Feb; 118(2):722-34. PubMed ID: 18172553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel Phex mutation in a new mouse model of hypophosphatemic rickets.
    Owen C; Chen F; Flenniken AM; Osborne LR; Ichikawa S; Adamson SL; Rossant J; Aubin JE
    J Cell Biochem; 2012 Jul; 113(7):2432-41. PubMed ID: 22573557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway.
    Rowe PS
    Crit Rev Eukaryot Gene Expr; 2012; 22(1):61-86. PubMed ID: 22339660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia.
    Barros NM; Hoac B; Neves RL; Addison WN; Assis DM; Murshed M; Carmona AK; McKee MD
    J Bone Miner Res; 2013 Mar; 28(3):688-99. PubMed ID: 22991293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype.
    Liu S; Guo R; Tu Q; Quarles LD
    J Biol Chem; 2002 Feb; 277(5):3686-97. PubMed ID: 11713245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FGF23 and disorders of phosphate homeostasis.
    Yu X; White KE
    Cytokine Growth Factor Rev; 2005 Apr; 16(2):221-32. PubMed ID: 15863037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenic role of Fgf23 in Hyp mice.
    Liu S; Zhou J; Tang W; Jiang X; Rowe DW; Quarles LD
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E38-49. PubMed ID: 16449303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What have we learnt about the regulation of phosphate metabolism?
    Blumsohn A
    Curr Opin Nephrol Hypertens; 2004 Jul; 13(4):397-401. PubMed ID: 15199289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.
    Xiao Z; Huang J; Cao L; Liang Y; Han X; Quarles LD
    PLoS One; 2014; 9(8):e104154. PubMed ID: 25089825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the DMP1 C-terminal fragment stimulates FGF23 and exacerbates the hypophosphatemic rickets phenotype in Hyp mice.
    Martin A; David V; Li H; Dai B; Feng JQ; Quarles LD
    Mol Endocrinol; 2012 Nov; 26(11):1883-95. PubMed ID: 22930691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.