BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 15579312)

  • 21. Osteopontin is highly susceptible to cleavage in bovine milk and the proteolytic fragments bind the αVβ₃-integrin receptor.
    Christensen B; Sørensen ES
    J Dairy Sci; 2014; 97(1):136-46. PubMed ID: 24268404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Matrilysin (MMP-7) cleaves C-type lectin domain family 3 member A (CLEC3A) on tumor cell surface and modulates its cell adhesion activity.
    Tsunezumi J; Higashi S; Miyazaki K
    J Cell Biochem; 2009 Mar; 106(4):693-702. PubMed ID: 19173304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel functional motif of osteopontin for human lymphocyte migration and survival.
    Cao Z; Dai J; Fan K; Wang H; Ji G; Li B; Zhang D; Hou S; Qian W; Zhao J; Wang H; Guo Y
    Mol Immunol; 2008 Aug; 45(14):3683-92. PubMed ID: 18632157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Osteopontin increases migration and MMP-9 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells.
    Chen YJ; Wei YY; Chen HT; Fong YC; Hsu CJ; Tsai CH; Hsu HC; Liu SH; Tang CH
    J Cell Physiol; 2009 Oct; 221(1):98-108. PubMed ID: 19475568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adhesive properties of osteopontin: regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain.
    Senger DR; Perruzzi CA; Papadopoulos-Sergiou A; Van de Water L
    Mol Biol Cell; 1994 May; 5(5):565-74. PubMed ID: 7522656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR characterization of intramolecular interaction of osteopontin, an intrinsically disordered protein with cryptic integrin-binding motifs.
    Yamaguchi Y; Hanashima S; Yagi H; Takahashi Y; Sasakawa H; Kurimoto E; Iguchi T; Kon S; Uede T; Kato K
    Biochem Biophys Res Commun; 2010 Mar; 393(3):487-91. PubMed ID: 20152802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Matrix metalloproteinase-2: mechanism and regulation of NF-kappaB-mediated activation and its role in cell motility and ECM-invasion.
    Philip S; Bulbule A; Kundu GC
    Glycoconj J; 2004; 21(8-9):429-41. PubMed ID: 15750784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling the orientation of bone osteopontin via its specific binding with collagen I to modulate osteoblast adhesion.
    Liu L; Qin C; Butler WT; Ratner BD; Jiang S
    J Biomed Mater Res A; 2007 Jan; 80(1):102-10. PubMed ID: 16960829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis.
    Uchinaka A; Hamada Y; Mori S; Miyagawa S; Saito A; Sawa Y; Matsuura N; Yamamoto H; Kawaguchi N
    Mol Cell Biochem; 2015 Oct; 408(1-2):191-203. PubMed ID: 26112906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that a non-RGD domain in rat osteopontin is involved in cell attachment.
    van Dijk S; D'Errico JA; Somerman MJ; Farach-Carson MC; Butler WT
    J Bone Miner Res; 1993 Dec; 8(12):1499-506. PubMed ID: 8304052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteopontin is cleaved at multiple sites close to its integrin-binding motifs in milk and is a novel substrate for plasmin and cathepsin D.
    Christensen B; Schack L; Kläning E; Sørensen ES
    J Biol Chem; 2010 Mar; 285(11):7929-37. PubMed ID: 20071328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases.
    Takino T; Koshikawa N; Miyamori H; Tanaka M; Sasaki T; Okada Y; Seiki M; Sato H
    Oncogene; 2003 Jul; 22(30):4617-26. PubMed ID: 12879005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed mutagenesis of the arginine-glycine-aspartic acid sequence in osteopontin destroys cell adhesion and migration functions.
    Xuan JW; Hota C; Shigeyama Y; D'Errico JA; Somerman MJ; Chambers AF
    J Cell Biochem; 1995 Apr; 57(4):680-90. PubMed ID: 7542253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro and in vivo effects of the overexpression of osteopontin on osteoblast differentiation using a recombinant adenoviral vector.
    Kojima H; Uede T; Uemura T
    J Biochem; 2004 Sep; 136(3):377-86. PubMed ID: 15598896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-terminal rather than full-length osteopontin or its C-terminal fragment is associated with carotid-plaque inflammation in hypertensive patients.
    Wolak T; Sion-Vardi N; Novack V; Greenberg G; Szendro G; Tarnovscki T; Nov O; Shelef I; Paran E; Rudich A
    Am J Hypertens; 2013 Mar; 26(3):326-33. PubMed ID: 23382482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of plasma gelsolin as a substrate for matrix metalloproteinases.
    Park SM; Hwang IK; Kim SY; Lee SJ; Park KS; Lee ST
    Proteomics; 2006 Feb; 6(4):1192-9. PubMed ID: 16421935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymeric osteopontin employs integrin alpha9beta1 as a receptor and attracts neutrophils by presenting a de novo binding site.
    Nishimichi N; Higashikawa F; Kinoh HH; Tateishi Y; Matsuda H; Yokosaki Y
    J Biol Chem; 2009 May; 284(22):14769-76. PubMed ID: 19346516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning of hamster osteopontin and expression distribution in normal tissues and experimentally induced oral squamous-cell carcinoma.
    Jin H; Valverde P; Chen J
    Arch Oral Biol; 2006 Mar; 51(3):236-45. PubMed ID: 16095557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin.
    Yokosaki Y; Matsuura N; Sasaki T; Murakami I; Schneider H; Higashiyama S; Saitoh Y; Yamakido M; Taooka Y; Sheppard D
    J Biol Chem; 1999 Dec; 274(51):36328-34. PubMed ID: 10593924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2.
    Calvete JJ; Marcinkiewicz C; Sanz L
    J Proteome Res; 2007 Jan; 6(1):326-36. PubMed ID: 17203976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.