These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15579459)

  • 1. Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis.
    Kim B; Tang Q; Biswas PS; Xu J; Schiffelers RM; Xie FY; Ansari AM; Scaria PV; Woodle MC; Lu P; Rouse BT
    Am J Pathol; 2004 Dec; 165(6):2177-85. PubMed ID: 15579459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis.
    Zheng M; Deshpande S; Lee S; Ferrara N; Rouse BT
    J Virol; 2001 Oct; 75(20):9828-35. PubMed ID: 11559816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontline Science: Aspirin-triggered resolvin D1 controls herpes simplex virus-induced corneal immunopathology.
    Rajasagi NK; Bhela S; Varanasi SK; Rouse BT
    J Leukoc Biol; 2017 Nov; 102(5):1159-1171. PubMed ID: 28584076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-17A differentially regulates corneal vascular endothelial growth factor (VEGF)-A and soluble VEGF receptor 1 expression and promotes corneal angiogenesis after herpes simplex virus infection.
    Suryawanshi A; Veiga-Parga T; Reddy PB; Rajasagi NK; Rouse BT
    J Immunol; 2012 Apr; 188(7):3434-46. PubMed ID: 22379030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of stromal keratitis by inhibition of neovascularization.
    Zheng M; Schwarz MA; Lee S; Kumaraguru U; Rouse BT
    Am J Pathol; 2001 Sep; 159(3):1021-9. PubMed ID: 11549594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique homologous siRNA blocks hypoxia-induced VEGF upregulation in human corneal cells and inhibits and regresses murine corneal neovascularization.
    Singh N; Higgins E; Amin S; Jani P; Richter E; Patel A; Kaur R; Wang J; Ambati J; Dong Z; Ambati BK
    Cornea; 2007 Jan; 26(1):65-72. PubMed ID: 17198016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of experimental choroidal neovascularization in mice by anti-VEGFA/VEGFR2 or non-specific siRNA.
    Gu L; Chen H; Tuo J; Gao X; Chen L
    Exp Eye Res; 2010 Sep; 91(3):433-9. PubMed ID: 20599960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor.
    Suryawanshi A; Mulik S; Sharma S; Reddy PB; Sehrawat S; Rouse BT
    J Immunol; 2011 Mar; 186(6):3653-65. PubMed ID: 21325621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subconjunctival bevacizumab for corneal neovascularization in herpetic stromal keratitis.
    Carrasco MA
    Cornea; 2008 Jul; 27(6):743-5. PubMed ID: 18580272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus.
    Mulik S; Xu J; Reddy PB; Rajasagi NK; Gimenez F; Sharma S; Lu PY; Rouse BT
    Am J Pathol; 2012 Aug; 181(2):525-34. PubMed ID: 22659469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VEGF164(165) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2.
    Usui T; Ishida S; Yamashiro K; Kaji Y; Poulaki V; Moore J; Moore T; Amano S; Horikawa Y; Dartt D; Golding M; Shima DT; Adamis AP
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):368-74. PubMed ID: 14744874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization.
    Zuo L; Fan Y; Wang F; Gu Q; Xu X
    Curr Eye Res; 2010 May; 35(5):375-84. PubMed ID: 20450250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robo 4 Counteracts Angiogenesis in Herpetic Stromal Keratitis.
    Gimenez F; Mulik S; Veiga-Parga T; Bhela S; Rouse BT
    PLoS One; 2015; 10(12):e0141925. PubMed ID: 26720197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of ocular angiogenesis by diced small interfering RNAs (siRNAs) specific to vascular endothelial growth factor (VEGF).
    Murata M; Takanami T; Shimizu S; Kubota Y; Horiuchi S; Habano W; Ma JX; Sato S
    Curr Eye Res; 2006 Feb; 31(2):171-80. PubMed ID: 16500768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anti-inflammatory role of VEGFR2/Src kinase inhibitor in herpes simplex virus 1-induced immunopathology.
    Sharma S; Mulik S; Kumar N; Suryawanshi A; Rouse BT
    J Virol; 2011 Jun; 85(12):5995-6007. PubMed ID: 21471229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both Kdr and Flt1 play a vital role in hypoxia-induced Src-PLD1-PKCγ-cPLA(2) activation and retinal neovascularization.
    Singh NK; Hansen DE; Kundumani-Sridharan V; Rao GN
    Blood; 2013 Mar; 121(10):1911-23. PubMed ID: 23319572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced β‑2‑glycoprotein І inhibits hypoxia‑induced retinal angiogenesis in neonatal mice through the vascular endothelial growth factor pathway.
    Liu H; Zhou S; Denyer G; Meng Z; Chen R; Lv L; Li C; Yu D; Yu P
    Mol Med Rep; 2015 Feb; 11(2):1025-30. PubMed ID: 25374014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of IL-6 in the paracrine production of VEGF in ocular HSV-1 infection.
    Biswas PS; Banerjee K; Kinchington PR; Rouse BT
    Exp Eye Res; 2006 Jan; 82(1):46-54. PubMed ID: 16009363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer.
    Kopparapu PK; Boorjian SA; Robinson BD; Downes M; Gudas LJ; Mongan NP; Persson JL
    Anticancer Res; 2013 Jun; 33(6):2381-90. PubMed ID: 23749886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models.
    Ruggeri B; Singh J; Gingrich D; Angeles T; Albom M; Yang S; Chang H; Robinson C; Hunter K; Dobrzanski P; Jones-Bolin S; Pritchard S; Aimone L; Klein-Szanto A; Herbert JM; Bono F; Schaeffer P; Casellas P; Bourie B; Pili R; Isaacs J; Ator M; Hudkins R; Vaught J; Mallamo J; Dionne C
    Cancer Res; 2003 Sep; 63(18):5978-91. PubMed ID: 14522925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.