These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The interaction of potassium with the activation of anomalous rectification in frog muscle membrane. Hestrin S J Physiol; 1981 Aug; 317():497-508. PubMed ID: 6975821 [TBL] [Abstract][Full Text] [Related]
6. A dual effect of formaldehyde on the inwardly rectifying potassium conductance in skeletal muscle. Hutter OF; Williams TL J Physiol; 1979 Jan; 286():591-606. PubMed ID: 312320 [TBL] [Abstract][Full Text] [Related]
7. Inward rectification in the transverse tubular system of frog skeletal muscle studied with potentiometric dyes. Ashcroft FM; Heiny JA; Vergara J J Physiol; 1985 Feb; 359():269-91. PubMed ID: 3873536 [TBL] [Abstract][Full Text] [Related]
8. The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle. Ashcroft FM; Stanfield PR J Physiol; 1983 Oct; 343():407-28. PubMed ID: 6315921 [TBL] [Abstract][Full Text] [Related]
9. Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. Constanti A; Galvan M J Physiol; 1983 Feb; 335():153-78. PubMed ID: 6875873 [TBL] [Abstract][Full Text] [Related]
10. Delayed rectification and anomalous rectification in frog's skeletal muscle membrane. NAKAJIMA S; IWASAKI S; OBATA K J Gen Physiol; 1962 Sep; 46(1):97-115. PubMed ID: 14478119 [TBL] [Abstract][Full Text] [Related]
11. Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. Standen NB; Stanfield PR J Physiol; 1980 Jul; 304():415-35. PubMed ID: 7441543 [TBL] [Abstract][Full Text] [Related]
12. Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission. Kandel ER; Tauc L J Physiol; 1966 Mar; 183(2):287-304. PubMed ID: 5942815 [TBL] [Abstract][Full Text] [Related]
13. Inward rectifier current noise in frog skeletal muscle. DeCoursey TE; Dempster J; Hutter OF J Physiol; 1984 Apr; 349():299-327. PubMed ID: 6330346 [TBL] [Abstract][Full Text] [Related]
14. Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker. Eisenberg B; Eisenberg RS J Cell Biol; 1968 Nov; 39(2):451-67. PubMed ID: 5692585 [TBL] [Abstract][Full Text] [Related]
15. Repetitive electrical activity of the muscle membrane induced in chloride-free medium. Nánási PP; Dankó M Clin Exp Pharmacol Physiol; 1992 Feb; 19(2):127-36. PubMed ID: 1372849 [TBL] [Abstract][Full Text] [Related]
16. Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. Leech CA; Stanfield PR J Physiol; 1981; 319():295-309. PubMed ID: 6976432 [TBL] [Abstract][Full Text] [Related]
17. The potassium current underlying delayed rectification in cat ventricular muscle. McDonald TF; Trautwein W J Physiol; 1978 Jan; 274():217-46. PubMed ID: 624994 [TBL] [Abstract][Full Text] [Related]
18. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. Gage PW; Eisenberg RS J Gen Physiol; 1969 Mar; 53(3):265-78. PubMed ID: 5767332 [TBL] [Abstract][Full Text] [Related]
19. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers. Eisenberg RS; Gage PW J Gen Physiol; 1969 Mar; 53(3):279-97. PubMed ID: 5767333 [TBL] [Abstract][Full Text] [Related]
20. An examination of frog myelinated axons using intracellular microelectrode recording: the role of voltage-dependent and leak conductances on the steady-state electrical properties. Poulter MO; Hashiguchi T; Padjen AL J Neurophysiol; 1993 Dec; 70(6):2301-12. PubMed ID: 7509856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]