These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15580860)

  • 21. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide.
    Ge Y; Bruno M; Wallace K; Winnik W; Prasad RY
    Proteomics; 2011 Jun; 11(12):2406-22. PubMed ID: 21595037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping protein post-translational modifications with mass spectrometry.
    Witze ES; Old WM; Resing KA; Ahn NG
    Nat Methods; 2007 Oct; 4(10):798-806. PubMed ID: 17901869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel quantitative proteomics strategy to study phosphorylation-dependent peptide-protein interactions.
    Zhou F; Galan J; Geahlen RL; Tao WA
    J Proteome Res; 2007 Jan; 6(1):133-40. PubMed ID: 17203957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry.
    Jensen ON
    Curr Opin Chem Biol; 2004 Feb; 8(1):33-41. PubMed ID: 15036154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Comprehensive study of protein ubiquitylation sites by conjugation of engineered lysine-less ubiquitin].
    Oshikawa K; Matsumoto M; Nakayama KI
    Seikagaku; 2012 Jun; 84(6):479-87. PubMed ID: 22844778
    [No Abstract]   [Full Text] [Related]  

  • 26. Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implications.
    Liska AJ; Shevchenko A
    Proteomics; 2003 Jan; 3(1):19-28. PubMed ID: 12548630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Review of a current role of mass spectrometry for proteome research.
    Chen CH
    Anal Chim Acta; 2008 Aug; 624(1):16-36. PubMed ID: 18706308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteome analysis of signaling cascades in human platelets.
    García A
    Blood Cells Mol Dis; 2006; 36(2):152-6. PubMed ID: 16487730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics approaches to understand protein phosphorylation in pathway modulation.
    Schulze WX
    Curr Opin Plant Biol; 2010 Jun; 13(3):280-87. PubMed ID: 20097120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic Analysis of Protein Posttranslational Modifications by Mass Spectrometry.
    Swaney DL; Villén J
    Cold Spring Harb Protoc; 2016 Mar; 2016(3):pdb.top077743. PubMed ID: 26933252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor tyrosine kinase signaling: a view from quantitative proteomics.
    Dengjel J; Kratchmarova I; Blagoev B
    Mol Biosyst; 2009 Oct; 5(10):1112-21. PubMed ID: 19756300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteomics discovery of biomarkers.
    Massé R; Gibbs BF
    Methods Biochem Anal; 2005; 45():181-216. PubMed ID: 19235296
    [No Abstract]   [Full Text] [Related]  

  • 33. Quantitation of target proteins and post-translational modifications in affinity-based proteomics approaches.
    Kiernan UA
    Expert Rev Proteomics; 2007 Jun; 4(3):421-8. PubMed ID: 17552926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mass spectrometry-based signal networks elucidation.
    He K; Wang N; Li WH; Zhang XM
    Curr Opin Biotechnol; 2012 Feb; 23(1):120-5. PubMed ID: 22100035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrated mass spectrometric and computational framework for the analysis of protein interaction networks.
    Rinner O; Mueller LN; Hubálek M; Müller M; Gstaiger M; Aebersold R
    Nat Biotechnol; 2007 Mar; 25(3):345-52. PubMed ID: 17322870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping of signaling pathways by functional interaction proteomics.
    von Kriegsheim A; Preisinger C; Kolch W
    Methods Mol Biol; 2008; 484():177-92. PubMed ID: 18592180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human Alzheimer's disease synaptic O-GlcNAc site mapping and iTRAQ expression proteomics with ion trap mass spectrometry.
    Skorobogatko YV; Deuso J; Adolf-Bryfogle J; Nowak MG; Gong Y; Lippa CF; Vosseller K
    Amino Acids; 2011 Mar; 40(3):765-79. PubMed ID: 20563614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Avoiding abundance bias in the functional annotation of post-translationally modified proteins.
    Schölz C; Lyon D; Refsgaard JC; Jensen LJ; Choudhary C; Weinert BT
    Nat Methods; 2015 Nov; 12(11):1003-4. PubMed ID: 26513550
    [No Abstract]   [Full Text] [Related]  

  • 40. Focus on computational proteomics.
    Wu FX; Poirier GG
    Proteomics; 2011 Oct; 11(19):3771-2. PubMed ID: 21932215
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.