BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15580933)

  • 1. Oxygenolysis of flavonoid compounds: DFT description of the mechanism for quercetin.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Chemphyschem; 2004 Nov; 5(11):1726-33. PubMed ID: 15580933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism.
    Antonczak S; Fiorucci S; Golebiowski J; Cabrol-Bass D
    Phys Chem Chem Phys; 2009 Mar; 11(10):1491-501. PubMed ID: 19240925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid DFT study of the mechanism of quercetin 2,3-dioxygenase.
    Siegbahn PE
    Inorg Chem; 2004 Sep; 43(19):5944-53. PubMed ID: 15360243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations bring new insights into flavonoid/quercetinase interaction modes.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2007 Jun; 67(4):961-70. PubMed ID: 17373707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and antioxidant activity copper-quercetin complex.
    Bukhari SB; Memon S; Mahroof-Tahir M; Bhanger MI
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1901-6. PubMed ID: 18783981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulations reveal a new entry site in quercetin 2,3-dioxygenase. A pathway for dioxygen?
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2006 Sep; 64(4):845-50. PubMed ID: 16786599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations enlighten the binding mode of quercetin to lipoxygenase-3.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    Proteins; 2008 Nov; 73(2):290-8. PubMed ID: 18655056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Study of Catalytic Reaction of Quercetin 2,4-Dioxygenase.
    Saito T; Kawakami T; Yamanaka S; Okumura M
    J Phys Chem B; 2015 Jun; 119(23):6952-62. PubMed ID: 25990020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study.
    Zhou A; Sadik OA
    J Agric Food Chem; 2008 Dec; 56(24):12081-91. PubMed ID: 19053369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron chelation by the powerful antioxidant flavonoid quercetin.
    Leopoldini M; Russo N; Chiodo S; Toscano M
    J Agric Food Chem; 2006 Aug; 54(17):6343-51. PubMed ID: 16910729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase.
    Kostyuk VA; Potapovich AI; Strigunova EN; Kostyuk TV; Afanas'ev IB
    Arch Biochem Biophys; 2004 Aug; 428(2):204-8. PubMed ID: 15246878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase ligation of Fe+ and Cu+ ions with some flavonoids.
    Kazazić SP; Butković V; Srzić D; Klasinc L
    J Agric Food Chem; 2006 Nov; 54(22):8391-6. PubMed ID: 17061811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational and spectroscopic characterization of the molecular and electronic structure of the Pb(II)-quercetin complex.
    Cornard JP; Dangleterre L; Lapouge C
    J Phys Chem A; 2005 Nov; 109(44):10044-51. PubMed ID: 16838923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexation of flavonoids with iron: structure and optical signatures.
    Ren J; Meng S; Lekka ChE; Kaxiras E
    J Phys Chem B; 2008 Feb; 112(6):1845-50. PubMed ID: 18211058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity.
    Podder N; Dey S; Anoop A; Mandal S
    Dalton Trans; 2022 Mar; 51(11):4338-4353. PubMed ID: 35191437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes.
    Fiorucci S; Golebiowski J; Cabrol-Bass D; Antonczak S
    J Agric Food Chem; 2007 Feb; 55(3):903-11. PubMed ID: 17263492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-property studies on the antioxidant activity of flavonoids present in diet.
    Teixeira S; Siquet C; Alves C; Boal I; Marques MP; Borges F; Lima JL; Reis S
    Free Radic Biol Med; 2005 Oct; 39(8):1099-108. PubMed ID: 16198236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen binding and activation by the complexes of PY2- and TPA-appended diphenylglycoluril receptors with copper and other metals.
    Sprakel VS; Feiters MC; Meyer-Klaucke W; Klopstra M; Brinksma J; Feringa BL; Karlin KD; Nolte RJ
    Dalton Trans; 2005 Nov; (21):3522-34. PubMed ID: 16234934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural, electronic, and optical properties of representative Cu-flavonoid complexes.
    Lekka ChE; Ren J; Meng S; Kaxiras E
    J Phys Chem B; 2009 May; 113(18):6478-83. PubMed ID: 19358539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.