BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 15581345)

  • 1. Origins of helix-coil switching in a light-sensitive peptide.
    Burns DC; Flint DG; Kumita JR; Feldman HJ; Serrano L; Zhang Z; Smart OS; Woolley GA
    Biochemistry; 2004 Dec; 43(49):15329-38. PubMed ID: 15581345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of a long, rigid photoswitchable cross-linker for promoting peptide and protein conformational change.
    Zhang F; Sadovski O; Woolley GA
    Chembiochem; 2008 Sep; 9(13):2147-54. PubMed ID: 18729291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photo-control of peptide conformation on a timescale of seconds with a conformationally constrained, blue-absorbing, photo-switchable linker.
    Beharry AA; Sadovski O; Woolley GA
    Org Biomol Chem; 2008 Dec; 6(23):4323-32. PubMed ID: 19005591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A water-soluble azobenzene cross-linker for photocontrol of peptide conformation.
    Zhang Z; Burns DC; Kumita JR; Smart OS; Woolley GA
    Bioconjug Chem; 2003; 14(4):824-9. PubMed ID: 12862437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photomodulation of conformational states. I. Mono- and bicyclic peptides with (4-amino)phenylazobenzoic acid as backbone constituent.
    Renner C; Behrendt R; Spörlein S; Wachtveitl J; Moroder L
    Biopolymers; 2000 Dec; 54(7):489-500. PubMed ID: 10984401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photomodulation of conformational states. II. Mono- and bicyclic peptides with (4-aminomethyl)phenylazobenzoic acid as backbone constituent.
    Renner C; Cramer J; Behrendt R; Moroder L
    Biopolymers; 2000 Dec; 54(7):501-14. PubMed ID: 10984402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible photocontrol of peptide helix content: adjusting thermal stability of the cis state.
    Pozhidaeva N; Cormier ME; Chaudhari A; Woolley GA
    Bioconjug Chem; 2004; 15(6):1297-303. PubMed ID: 15546196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocontrol of the collagen triple helix: synthesis and conformational characterization of bis-cysteinyl collagenous peptides with an azobenzene clamp.
    Kusebauch U; Cadamuro SA; Musiol HJ; Moroder L; Renner C
    Chemistry; 2007; 13(10):2966-73. PubMed ID: 17203492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A blue-green absorbing cross-linker for rapid photoswitching of peptide helix content.
    Chi L; Sadovski O; Woolley GA
    Bioconjug Chem; 2006; 17(3):670-6. PubMed ID: 16704204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based approach to the photocontrol of protein folding.
    Zhang F; Zarrine-Afsar A; Al-Abdul-Wahid MS; Prosser RS; Davidson AR; Woolley GA
    J Am Chem Soc; 2009 Feb; 131(6):2283-9. PubMed ID: 19170498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A photoinducible beta-hairpin.
    Aemissegger A; Kräutler V; van Gunsteren WF; Hilvert D
    J Am Chem Soc; 2005 Mar; 127(9):2929-36. PubMed ID: 15740129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetics of helix unfolding of an azobenzene cross-linked peptide probed by nanosecond time-resolved optical rotatory dispersion.
    Chen E; Kumita JR; Woolley GA; Kliger DS
    J Am Chem Soc; 2003 Oct; 125(41):12443-9. PubMed ID: 14531687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of helix-coil transition of block copolypeptide, Glu12-Ala12, by combined use of CD and NMR spectroscopy.
    Yamazaki T; Furuya H; Watanabe T; Miyachi S; Nishiuchi Y; Nishio H; Abe A
    Biopolymers; 2005; 80(2-3):225-32. PubMed ID: 15815984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photomodulation of conformational states. III. Water-soluble bis-cysteinyl-peptides with (4-aminomethyl) phenylazobenzoic acid as backbone constituent.
    Renner C; Behrendt R; Heim N; Moroder L
    Biopolymers; 2002 May; 63(6):382-93. PubMed ID: 11920439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of azobenzene cross-linker position on the degree of helical peptide photo-control.
    Ali AM; Woolley GA
    Org Biomol Chem; 2013 Aug; 11(32):5325-31. PubMed ID: 23842596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-control of peptide helix content by an azobenzene cross-linker: steric interactions with underlying residues are not critical.
    Kumita JR; Flint DG; Smart OS; Woolley GA
    Protein Eng; 2002 Jul; 15(7):561-9. PubMed ID: 12200538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using an azobenzene cross-linker to either increase or decrease peptide helix content upon trans-to-cis photoisomerization.
    Flint DG; Kumita JR; Smart OS; Woolley GA
    Chem Biol; 2002 Mar; 9(3):391-7. PubMed ID: 11927265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new tool in peptide engineering: a photoswitchable stilbene-type beta-hairpin mimetic.
    Erdélyi M; Karlén A; Gogoll A
    Chemistry; 2005 Dec; 12(2):403-12. PubMed ID: 16187380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocontrol of reversible amyloid formation with a minimal-design peptide.
    Waldauer SA; Hassan S; Paoli B; Donaldson PM; Pfister R; Hamm P; Caflisch A; Pellarin R
    J Phys Chem B; 2012 Aug; 116(30):8961-73. PubMed ID: 22724381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the ortho modification of azobenzene on the photoregulatory efficiency of DNA hybridization and the thermal stability of its cis form.
    Nishioka H; Liang X; Asanuma H
    Chemistry; 2010 Feb; 16(7):2054-62. PubMed ID: 20104556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.