BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15581352)

  • 1. The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling.
    Conibear PB; Málnási-Csizmadia A; Bagshaw CR
    Biochemistry; 2004 Dec; 43(49):15404-17. PubMed ID: 15581352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic characterization of the function of myosin loop 4 in the actin-myosin interaction.
    Gyimesi M; Tsaturyan AK; Kellermayer MS; Málnási-Csizmadia A
    Biochemistry; 2008 Jan; 47(1):283-91. PubMed ID: 18067324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.
    Koppole S; Smith JC; Fischer S
    J Mol Biol; 2006 Aug; 361(3):604-16. PubMed ID: 16859703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic resolution of a conformational transition and the ATP hydrolysis step using relaxation methods with a Dictyostelium myosin II mutant containing a single tryptophan residue.
    Málnási-Csizmadia A; Pearson DS; Kovács M; Woolley RJ; Geeves MA; Bagshaw CR
    Biochemistry; 2001 Oct; 40(42):12727-37. PubMed ID: 11601998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of actomyosin interactions in relation to the cross-bridge cycle.
    Zeng W; Conibear PB; Dickens JL; Cowie RA; Wakelin S; Málnási-Csizmadia A; Bagshaw CR
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1843-55. PubMed ID: 15647160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The principal motions involved in the coupling mechanism of the recovery stroke of the myosin motor.
    Mesentean S; Koppole S; Smith JC; Fischer S
    J Mol Biol; 2007 Mar; 367(2):591-602. PubMed ID: 17275022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of the reverse recovery step, phosphate release, and actin activation of Dictyostelium myosin II.
    Gyimesi M; Kintses B; Bodor A; Perczel A; Fischer S; Bagshaw CR; Málnási-Csizmadia A
    J Biol Chem; 2008 Mar; 283(13):8153-63. PubMed ID: 18211892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium, ADP, and actin binding linkage of myosin V: evidence for multiple myosin V-ADP and actomyosin V-ADP states.
    Hannemann DE; Cao W; Olivares AO; Robblee JP; De La Cruz EM
    Biochemistry; 2005 Jun; 44(24):8826-40. PubMed ID: 15952789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolution of conformational states of Dictyostelium myosin II motor domain using tryptophan (W501) mutants: implications for the open-closed transition identified by crystallography.
    Málnási-Csizmadia A; Woolley RJ; Bagshaw CR
    Biochemistry; 2000 Dec; 39(51):16135-46. PubMed ID: 11123942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural model for actin-induced nucleotide release in myosin.
    Reubold TF; Eschenburg S; Becker A; Kull FJ; Manstein DJ
    Nat Struct Biol; 2003 Oct; 10(10):826-30. PubMed ID: 14502270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural state of the myosin V motor without bound nucleotide.
    Coureux PD; Wells AL; Ménétrey J; Yengo CM; Morris CA; Sweeney HL; Houdusse A
    Nature; 2003 Sep; 425(6956):419-23. PubMed ID: 14508494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of structural changes in the relay loop and SH3 domain of myosin.
    van Duffelen M; Chrin LR; Berger CL
    Biochem Biophys Res Commun; 2005 Apr; 329(2):563-72. PubMed ID: 15737623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of myosin subfragment 1 with forms of monomeric actin.
    Ballweber E; Kiessling P; Manstein D; Mannherz HG
    Biochemistry; 2003 Mar; 42(10):3060-9. PubMed ID: 12627973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluenesulfonamide.
    Shaw MA; Ostap EM; Goldman YE
    Biochemistry; 2003 May; 42(20):6128-35. PubMed ID: 12755615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-headed binding of the unphosphorylated nonmuscle heavy meromyosin.ADP complex to actin.
    Kovács M; Tóth J; Nyitray L; Sellers JR
    Biochemistry; 2004 Apr; 43(14):4219-26. PubMed ID: 15065866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dictyostelium myosin II mutations that uncouple the converter swing and ATP hydrolysis cycle.
    Sasaki N; Ohkura R; Sutoh K
    Biochemistry; 2003 Jan; 42(1):90-5. PubMed ID: 12515542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addition of lysines to the 50/20 kDa junction of myosin strengthens weak binding to actin without affecting the maximum ATPase activity.
    Joel PB; Sweeney HL; Trybus KM
    Biochemistry; 2003 Aug; 42(30):9160-6. PubMed ID: 12885250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural coupling between ATPase activation and recovery stroke in the myosin II motor.
    Koppole S; Smith JC; Fischer S
    Structure; 2007 Jul; 15(7):825-37. PubMed ID: 17637343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.