BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 15581575)

  • 1. The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity.
    Aitken SM; Kirsch JF
    Arch Biochem Biophys; 2005 Jan; 433(1):166-75. PubMed ID: 15581575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein.
    Banerjee R; Zou CG
    Arch Biochem Biophys; 2005 Jan; 433(1):144-56. PubMed ID: 15581573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enzymes of the transsulfuration pathways: active-site characterizations.
    Aitken SM; Lodha PH; Morneau DJ
    Biochim Biophys Acta; 2011 Nov; 1814(11):1511-7. PubMed ID: 21435402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum reveals its substrate and reaction specificity.
    Steegborn C; Messerschmidt A; Laber B; Streber W; Huber R; Clausen T
    J Mol Biol; 1999 Jul; 290(5):983-96. PubMed ID: 10438597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites.
    Taoka S; West M; Banerjee R
    Biochemistry; 1999 Mar; 38(9):2738-44. PubMed ID: 10052944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase.
    Kery V; Poneleit L; Meyer JD; Manning MC; Kraus JP
    Biochemistry; 1999 Mar; 38(9):2716-24. PubMed ID: 10052942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli cystathionine gamma-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions.
    Aitken SM; Kim DH; Kirsch JF
    Biochemistry; 2003 Sep; 42(38):11297-306. PubMed ID: 14503880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the yeast cystathionine beta-synthase forward and reverse reactions: continuous assays and the equilibrium constant for the reaction.
    Aitken SM; Kirsch JF
    Biochemistry; 2003 Jan; 42(2):571-8. PubMed ID: 12525186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast cystathionine beta-synthase reacts with L-allothreonine, a non-natural substrate, and L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine.
    Jhee KH; Niks D; McPhie P; Dunn MF; Miles EW
    Biochemistry; 2002 Feb; 41(6):1828-35. PubMed ID: 11827527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pyridoxal phosphate-dependent enzymes of sulfur amino acid metabolism].
    Gabibov AG; Shuster AM; Khomutov AR; Tolosa EA; Goriachenkova EV
    Biokhimiia; 1989 May; 54(5):726-9. PubMed ID: 2758077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of cystathionine beta-synthase activity by the Arg-51 and Arg-224 mutations.
    Ozaki S; Inada A; Sada K
    Biosci Biotechnol Biochem; 2008 Sep; 72(9):2318-23. PubMed ID: 18776696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping peptides correlated with transmission of intrasteric inhibition and allosteric activation in human cystathionine beta-synthase.
    Sen S; Yu J; Yamanishi M; Schellhorn D; Banerjee R
    Biochemistry; 2005 Nov; 44(43):14210-6. PubMed ID: 16245937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity of cystathionine beta-synthase for pyridoxal 5'-phosphate in cultured cells. A mechanism for pyridoxine-responsive homocystinuria.
    Lipson MH; Kraus J; Rosenberg LE
    J Clin Invest; 1980 Aug; 66(2):188-93. PubMed ID: 7400312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of cystathionine beta-synthase in homocysteine metabolism.
    Jhee KH; Kruger WD
    Antioxid Redox Signal; 2005; 7(5-6):813-22. PubMed ID: 15890029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residue N84 of yeast cystathionine beta-synthase is a determinant of reaction specificity.
    Lodha PH; Hopwood EM; Manders AL; Aitken SM
    Biochim Biophys Acta; 2010 Jul; 1804(7):1424-31. PubMed ID: 20176145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli.
    Belew MS; Quazi FI; Willmore WG; Aitken SM
    Protein Expr Purif; 2009 Apr; 64(2):139-45. PubMed ID: 19010420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of a transsulfuration pathway in the lens: a new oxidative stress defense system.
    Persa C; Pierce A; Ma Z; Kabil O; Lou MF
    Exp Eye Res; 2004 Dec; 79(6):875-86. PubMed ID: 15642325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of the active site of Escherichia coli cystathionine γ-synthase.
    Jaworski AF; Lodha PH; Manders AL; Aitken SM
    Protein Sci; 2012 Nov; 21(11):1662-71. PubMed ID: 22855027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional properties of the active core of human cystathionine beta-synthase crystals.
    Bruno S; Schiaretti F; Burkhard P; Kraus JP; Janosik M; Mozzarelli A
    J Biol Chem; 2001 Jan; 276(1):16-9. PubMed ID: 11042162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of active-site residues Thr81, Ser82, Thr85, Gln157, and Tyr158 in yeast cystathionine beta-synthase catalysis and reaction specificity.
    Aitken SM; Kirsch JF
    Biochemistry; 2004 Feb; 43(7):1963-71. PubMed ID: 14967036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.