BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 15581583)

  • 1. Reaction specificity in pyridoxal phosphate enzymes.
    Toney MD
    Arch Biochem Biophys; 2005 Jan; 433(1):279-87. PubMed ID: 15581583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase.
    Toney MD; Hohenester E; Keller JW; Jansonius JN
    J Mol Biol; 1995 Jan; 245(2):151-79. PubMed ID: 7799433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-steady-state kinetic analysis of the reactions of alternate substrates with dialkylglycine decarboxylase.
    Sun S; Bagdassarian CK; Toney MD
    Biochemistry; 1998 Mar; 37(11):3876-85. PubMed ID: 9521708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions of alternate substrates demonstrate stereoelectronic control of reactivity in dialkylglycine decarboxylase.
    Sun S; Zabinski RF; Toney MD
    Biochemistry; 1998 Mar; 37(11):3865-75. PubMed ID: 9521707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling reaction specificity in pyridoxal phosphate enzymes.
    Toney MD
    Biochim Biophys Acta; 2011 Nov; 1814(11):1407-18. PubMed ID: 21664990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined quantum mechanical and molecular mechanical study of the reaction mechanism and alpha-amino acidity in alanine racemase.
    Major DT; Gao J
    J Am Chem Soc; 2006 Dec; 128(50):16345-57. PubMed ID: 17165790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Q52 in catalysis of decarboxylation and transamination in dialkylglycine decarboxylase.
    Fogle EJ; Liu W; Woon ST; Keller JW; Toney MD
    Biochemistry; 2005 Dec; 44(50):16392-404. PubMed ID: 16342932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition state stabilization and alpha-amino carbon acidity in alanine racemase.
    Major DT; Nam K; Gao J
    J Am Chem Soc; 2006 Jun; 128(25):8114-5. PubMed ID: 16787057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications.
    Bertoldi M; Cellini B; Paiardini A; Di Salvo M; Borri Voltattorni C
    Biochem J; 2003 Apr; 371(Pt 2):473-83. PubMed ID: 12519070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine.
    Stamper GF; Morollo AA; Ringe D
    Biochemistry; 1998 Jul; 37(29):10438-45. PubMed ID: 9671513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase.
    Yew WS; Wise EL; Rayment I; Gerlt JA
    Biochemistry; 2004 Jun; 43(21):6427-37. PubMed ID: 15157077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple hydrogen kinetic isotope effects for enzymes catalyzing exchange with solvent: application to alanine racemase.
    Spies MA; Toney MD
    Biochemistry; 2003 May; 42(17):5099-107. PubMed ID: 12718553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active site model for gamma-aminobutyrate aminotransferase explains substrate specificity and inhibitor reactivities.
    Toney MD; Pascarella S; De Biase D
    Protein Sci; 1995 Nov; 4(11):2366-74. PubMed ID: 8563634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding catalytic specificity in alanine racemase from quantum mechanical and molecular mechanical simulations of the arginine 219 mutant.
    Rubinstein A; Major DT
    Biochemistry; 2010 May; 49(18):3957-64. PubMed ID: 20394349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen reactivity with pyridoxal 5'-phosphate enzymes: biochemical implications and functional relevance.
    Bisello G; Longo C; Rossignoli G; Phillips RS; Bertoldi M
    Amino Acids; 2020 Aug; 52(8):1089-1105. PubMed ID: 32844248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase.
    Zhou X; Toney MD
    Biochemistry; 1999 Jan; 38(1):311-20. PubMed ID: 9890912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A structural and mechanistic comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes.
    Gani D
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):131-9. PubMed ID: 1678532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding the road less traveled: how the topology of enzyme-substrate complexes can dictate product selection.
    Eliot AC; Kirsch JF
    Acc Chem Res; 2003 Oct; 36(10):757-65. PubMed ID: 14567709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of the Pseudomonas dacunhae aspartate-beta-decarboxylase dodecamer reveals an unknown oligomeric assembly for a pyridoxal-5'-phosphate-dependent enzyme.
    Lima S; Sundararaju B; Huang C; Khristoforov R; Momany C; Phillips RS
    J Mol Biol; 2009 Apr; 388(1):98-108. PubMed ID: 19265705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.