BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 15581590)

  • 1. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.
    Katoh Y; Iida K; Kang MI; Kobayashi A; Mizukami M; Tong KI; McMahon M; Hayes JD; Itoh K; Yamamoto M
    Arch Biochem Biophys; 2005 Jan; 433(2):342-50. PubMed ID: 15581590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2004 Jul; 279(30):31556-67. PubMed ID: 15143058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum.
    Zhang Y; Crouch DH; Yamamoto M; Hayes JD
    Biochem J; 2006 Nov; 399(3):373-85. PubMed ID: 16872277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model.
    Tong KI; Katoh Y; Kusunoki H; Itoh K; Tanaka T; Yamamoto M
    Mol Cell Biol; 2006 Apr; 26(8):2887-900. PubMed ID: 16581765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response.
    Tong KI; Padmanabhan B; Kobayashi A; Shang C; Hirotsu Y; Yokoyama S; Yamamoto M
    Mol Cell Biol; 2007 Nov; 27(21):7511-21. PubMed ID: 17785452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes.
    Kobayashi A; Ohta T; Yamamoto M
    Methods Enzymol; 2004; 378():273-86. PubMed ID: 15038975
    [No Abstract]   [Full Text] [Related]  

  • 8. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.
    Zipper LM; Mulcahy RT
    J Biol Chem; 2002 Sep; 277(39):36544-52. PubMed ID: 12145307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress.
    Zhang DD; Hannink M
    Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M; Hasson T
    Mol Cell Biol; 2005 Jun; 25(11):4501-13. PubMed ID: 15899855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression.
    McMahon M; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2003 Jun; 278(24):21592-600. PubMed ID: 12682069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system.
    Kobayashi M; Itoh K; Suzuki T; Osanai H; Nishikawa K; Katoh Y; Takagi Y; Yamamoto M
    Genes Cells; 2002 Aug; 7(8):807-20. PubMed ID: 12167159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1.
    Kobayashi A; Kang MI; Watai Y; Tong KI; Shibata T; Uchida K; Yamamoto M
    Mol Cell Biol; 2006 Jan; 26(1):221-9. PubMed ID: 16354693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; Igarashi K; Engel JD; Yamamoto M
    Genes Dev; 1999 Jan; 13(1):76-86. PubMed ID: 9887101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase.
    Furukawa M; Xiong Y
    Mol Cell Biol; 2005 Jan; 25(1):162-71. PubMed ID: 15601839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes.
    Kang MI; Kobayashi A; Wakabayashi N; Kim SG; Yamamoto M
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2046-51. PubMed ID: 14764898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.