BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 15581592)

  • 1. Progress in cytochrome P450 active site modeling.
    Kemp CA; Maréchal JD; Sutcliffe MJ
    Arch Biochem Biophys; 2005 Jan; 433(2):361-8. PubMed ID: 15581592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into drug metabolism from modelling studies of cytochrome P450-drug interactions.
    Maréchal JD; Sutcliffe MJ
    Curr Top Med Chem; 2006; 6(15):1619-26. PubMed ID: 16918473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions.
    Maréchal JD; Kemp CA; Roberts GC; Paine MJ; Wolf CR; Sutcliffe MJ
    Br J Pharmacol; 2008 Mar; 153 Suppl 1(Suppl 1):S82-9. PubMed ID: 18026129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure.
    Lewis DF
    Xenobiotica; 2002 Apr; 32(4):305-23. PubMed ID: 12028664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes.
    Lewis DF
    Arch Biochem Biophys; 2003 Jan; 409(1):32-44. PubMed ID: 12464242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of CYP2C9 and CYP2C5 and an evaluation of commonly used molecular modeling techniques.
    Afzelius L; Raubacher F; Karlén A; Jørgensen FS; Andersson TB; Masimirembwa CM; Zamora I
    Drug Metab Dispos; 2004 Nov; 32(11):1218-29. PubMed ID: 15483192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility of human cytochrome P450 enzymes: molecular dynamics and spectroscopy reveal important function-related variations.
    Hendrychová T; Anzenbacherová E; Hudeček J; Skopalík J; Lange R; Hildebrandt P; Otyepka M; Anzenbacher P
    Biochim Biophys Acta; 2011 Jan; 1814(1):58-68. PubMed ID: 20656072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure conservation in cytochromes P450.
    Mestres J
    Proteins; 2005 Feb; 58(3):596-609. PubMed ID: 15617063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108.
    de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM
    Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homology modelling of human cytochromes P450 involved in xenobiotic metabolism and rationalization of substrate selectivity.
    Lewis DF
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):369-74. PubMed ID: 10445400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural diversity of human xenobiotic-metabolizing cytochrome P450 monooxygenases.
    Johnson EF; Stout CD
    Biochem Biophys Res Commun; 2005 Dec; 338(1):331-6. PubMed ID: 16157296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfaphenazole derivatives as tools for comparing cytochrome P450 2C5 and human cytochromes P450 2Cs: identification of a new high affinity substrate common to those enzymes.
    Marques-Soares C; Dijols S; Macherey AC; Wester MR; Johnson EF; Dansette PM; Mansuy D
    Biochemistry; 2003 Jun; 42(21):6363-9. PubMed ID: 12767217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities.
    Venhorst J; ter Laak AM; Commandeur JN; Funae Y; Hiroi T; Vermeulen NP
    J Med Chem; 2003 Jan; 46(1):74-86. PubMed ID: 12502361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating human P450s involved in drug metabolism via homology with high-resolution P450 crystal structures of the CYP2C subfamily.
    Lewis DF; Ito Y; Goldfarb PS
    Curr Drug Metab; 2006 Aug; 7(6):589-98. PubMed ID: 16918314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of enzyme selectivity in the human CYP2C subfamily: homology modelling of CYP2C8, CYP2C9 and CYP2C19 from the CYP2C5 crystallographic template.
    Lewis DF; Dickins M; Lake BG; Goldfarb PS
    Drug Metabol Drug Interact; 2003; 19(4):257-85. PubMed ID: 14768974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrates of human cytochromes P450 from families CYP1 and CYP2: analysis of enzyme selectivity and metabolism.
    Lewis DF; Lake BG; Dickins M
    Drug Metabol Drug Interact; 2004; 20(3):111-42. PubMed ID: 15508429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4.
    De Rienzo F; Fanelli F; Menziani MC; De Benedetti PG
    J Comput Aided Mol Des; 2000 Jan; 14(1):93-116. PubMed ID: 10702928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine.
    Ring BJ; Eckstein JA; Gillespie JS; Binkley SN; VandenBranden M; Wrighton SA
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1044-50. PubMed ID: 11356927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the ligand-CYP2B4 complexes: effect of structure on binding free energies and heme spin state.
    Harris DL; Park JY; Gruenke L; Waskell L
    Proteins; 2004 Jun; 55(4):895-914. PubMed ID: 15146488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a 3D model of cytochrome P450 2B4.
    Chang YT; Stiffelman OB; Vakser IA; Loew GH; Bridges A; Waskell L
    Protein Eng; 1997 Feb; 10(2):119-29. PubMed ID: 9089811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.