BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 1558164)

  • 1. Hypotonicity and cell volume regulation in shark rectal gland: role of organic osmolytes and F-actin.
    Ziyadeh FN; Mills JW; Kleinzeller A
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F468-79. PubMed ID: 1558164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K+-induced swelling of the dogfish shark (Squalus acanthias) rectal gland cells is associated with changes of the cytoskeleton.
    Kleinzeller A; Mills JW
    Biochim Biophys Acta; 1989 Oct; 1014(1):40-52. PubMed ID: 2804089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confocal microscopic observation of cytoskeletal reorganizations in cultured shark rectal gland cells following treatment with hypotonic shock and high external K+.
    Henson JH; Roesener CD; Gaetano CJ; Mendola RJ; Forrest JN; Holy J; Kleinzeller A
    J Exp Zool; 1997 Dec; 279(5):415-24. PubMed ID: 9392862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pCMBS-induced swelling of dogfish (Squalus acanthias) rectal gland cells: role of the Na+,K(+)-ATPase and the cytoskeleton.
    Kleinzeller A; Booz GW; Mills JW; Ziyadeh FN
    Biochim Biophys Acta; 1990 Jun; 1025(1):21-31. PubMed ID: 2164417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimethylamine oxide and the maintenance of volume of dogfish shark rectal gland cells.
    Kleinzeller A
    J Exp Zool; 1985 Oct; 236(1):11-7. PubMed ID: 4056702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotically induced conductance and capacitance changes in in vitro perfused rectal gland tubules of Squalus acanthias.
    Thiele I; Warth R; Bleich M; Waldegger S; Lang F; Greger R
    Kidney Blood Press Res; 1998; 21(5):317-24. PubMed ID: 9851318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume regulation by human lymphocytes. Role of calcium.
    Grinstein S; Dupre A; Rothstein A
    J Gen Physiol; 1982 May; 79(5):849-68. PubMed ID: 6808083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propionate induces cell swelling and K+ accumulation in shark rectal gland.
    Feldman GM; Ziyadeh FN; Mills JW; Booz GW; Kleinzeller A
    Am J Physiol; 1989 Aug; 257(2 Pt 1):C377-84. PubMed ID: 2548391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volume regulation by human lymphocytes: characterization of the ionic basis for regulatory volume decrease.
    Cheung RK; Grinstein S; Dosch HM; Gelfand EW
    J Cell Physiol; 1982 Aug; 112(2):189-96. PubMed ID: 6288741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory volume decrease in HL-60 cells: importance of rapid changes in permeability of Cl- and organic solutes.
    Hallows KR; Knauf PA
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C1045-56. PubMed ID: 7943267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence.
    Ballatori N; Boyer JL
    Am J Physiol; 1992 Mar; 262(3 Pt 1):G451-60. PubMed ID: 1550235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efflux of osmolyte amino acids during isovolumic regulation in hippocampal slices.
    Franco R; Quesada O; Pasantes-Morales H
    J Neurosci Res; 2000 Sep; 61(6):701-11. PubMed ID: 10972967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of cell volume and electrolytes of A6 cells after re-establishing isotonicity following hypotonic stress.
    Grosse T; Heid I; Oztürk I; Borgmann S; Beck FX; Dörge A
    Pflugers Arch; 2003 Oct; 447(1):29-34. PubMed ID: 12898258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume-activated trimethylamine oxide efflux in red blood cells of spiny dogfish (Squalus acanthias).
    Koomoa DL; Musch MW; MacLean AV; Goldstein L
    Am J Physiol Regul Integr Comp Physiol; 2001 Sep; 281(3):R803-10. PubMed ID: 11506995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of volume-sensitive Cl - channels and cell volume by actin filaments and microtubules in human cervical cancer HT-3 cells.
    Shen MR; Chou CY; Hsu KF; Hsu KS; Wu ML
    Acta Physiol Scand; 1999 Nov; 167(3):215-25. PubMed ID: 10606823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the F-actin cytoskeleton in the RVD and RVI processes in Ehrlich ascites tumor cells.
    Pedersen SF; Mills JW; Hoffmann EK
    Exp Cell Res; 1999 Oct; 252(1):63-74. PubMed ID: 10502400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Taurine and cell volume maintenance in the shark rectal gland: cellular fluxes and kinetics.
    Ziyadeh FN; Feldman GM; Booz GW; Kleinzeller A
    Biochim Biophys Acta; 1988 Aug; 943(1):43-52. PubMed ID: 2840958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion content and cell volume in isolated collecting duct cells: effect of hypotonicity.
    Grunewald JM; Grunewald RW; Kinne RK
    Kidney Int; 1993 Sep; 44(3):509-17. PubMed ID: 8231023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presence of a sodium-potassium chloride cotransport system in the rectal gland of Squalus acanthias.
    Hannafin J; Kinne-Saffran E; Friedman D; Kinne R
    J Membr Biol; 1983; 75(1):73-83. PubMed ID: 6444191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective permeability barrier to urea in shark rectal gland.
    Zeidel JD; Mathai JC; Campbell JD; Ruiz WG; Apodaca GL; Riordan J; Zeidel ML
    Am J Physiol Renal Physiol; 2005 Jul; 289(1):F83-9. PubMed ID: 15727989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.