BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 15581711)

  • 1. A visual salience map in the primate frontal eye field.
    Thompson KG; Bichot NP
    Prog Brain Res; 2005; 147():251-62. PubMed ID: 15581711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the role of frontal eye field in guiding attention and saccades.
    Schall JD
    Vision Res; 2004 Jun; 44(12):1453-67. PubMed ID: 15066404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course of attentional modulation in the frontal eye field during curve tracing.
    Khayat PS; Pooresmaeili A; Roelfsema PR
    J Neurophysiol; 2009 Apr; 101(4):1813-22. PubMed ID: 19176609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstimulation of the frontal eye field and its effects on covert spatial attention.
    Moore T; Fallah M
    J Neurophysiol; 2004 Jan; 91(1):152-62. PubMed ID: 13679398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.
    Thompson KG; Bichot NP; Sato TR
    J Neurophysiol; 2005 Jan; 93(1):337-51. PubMed ID: 15317836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields.
    Elsley JK; Nagy B; Cushing SL; Corneil BD
    J Neurophysiol; 2007 Sep; 98(3):1333-54. PubMed ID: 17625064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual feature selectivity in frontal eye fields induced by experience in mature macaques.
    Bichot NP; Schall JD; Thompson KG
    Nature; 1996 Jun; 381(6584):697-9. PubMed ID: 8649514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateralized frontal eye field activity precedes occipital activity shortly before saccades: evidence for cortico-cortical feedback as a mechanism underlying covert attention shifts.
    Gutteling TP; van Ettinger-Veenstra HM; Kenemans JL; Neggers SF
    J Cogn Neurosci; 2010 Sep; 22(9):1931-43. PubMed ID: 19702472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of target discrimination in human frontal eye fields.
    O'Shea J; Muggleton NG; Cowey A; Walsh V
    J Cogn Neurosci; 2004; 16(6):1060-7. PubMed ID: 15298792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontal eye field contributions to rapid corrective saccades.
    Murthy A; Ray S; Shorter SM; Priddy EG; Schall JD; Thompson KG
    J Neurophysiol; 2007 Feb; 97(2):1457-69. PubMed ID: 17135479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontal eye field signals that may trigger the brainstem saccade generator.
    Keller EL; Lee BT; Lee KM
    Prog Brain Res; 2008; 171():107-14. PubMed ID: 18718288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corollary discharge and spatial updating: when the brain is split, is space still unified?
    Colby CL; Berman RA; Heiser LM; Saunders RC
    Prog Brain Res; 2005; 149():187-205. PubMed ID: 16226585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anterior intraparietal sulcus is sensitive to bottom-up attention driven by stimulus salience.
    Geng JJ; Mangun GR
    J Cogn Neurosci; 2009 Aug; 21(8):1584-601. PubMed ID: 18752405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural mechanisms underlying target selection with saccadic eye movements.
    Schiller PH; Tehovnik EJ
    Prog Brain Res; 2005; 149():157-71. PubMed ID: 16226583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field.
    Hamker FH; Zirnsak M
    Neural Netw; 2006 Nov; 19(9):1371-82. PubMed ID: 17014990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement.
    Hamker FH
    Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal basis of covert spatial attention in the frontal eye field.
    Thompson KG; Biscoe KL; Sato TR
    J Neurosci; 2005 Oct; 25(41):9479-87. PubMed ID: 16221858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of similarity and history on neural mechanisms of visual selection.
    Bichot NP; Schall JD
    Nat Neurosci; 1999 Jun; 2(6):549-54. PubMed ID: 10448220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection and maintenance of saccade goals in the human frontal eye fields.
    Curtis CE; D'Esposito M
    J Neurophysiol; 2006 Jun; 95(6):3923-7. PubMed ID: 16467423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.