BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15581787)

  • 1. Nutrient sensing and metabolic decisions.
    Lindsley JE; Rutter J
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Dec; 139(4):543-59. PubMed ID: 15581787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer.
    Marshall S
    Sci STKE; 2006 Aug; 2006(346):re7. PubMed ID: 16885148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat.
    Chotechuang N; Azzout-Marniche D; Bos C; Chaumontet C; Gausserès N; Steiler T; Gaudichon C; Tomé D
    Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1313-23. PubMed ID: 19738034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between the AMP-activated protein kinase and mTOR signaling pathways.
    Kimball SR
    Med Sci Sports Exerc; 2006 Nov; 38(11):1958-64. PubMed ID: 17095930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase.
    Du M; Shen QW; Zhu MJ; Ford SP
    J Anim Sci; 2007 Apr; 85(4):919-27. PubMed ID: 17178807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside.
    Reiter AK; Bolster DR; Crozier SJ; Kimball SR; Jefferson LS
    Am J Physiol Endocrinol Metab; 2005 May; 288(5):E980-8. PubMed ID: 15613684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis: a potential strategy to prevent the development of cardiac hypertrophy.
    Chan AY; Dyck JR
    Can J Physiol Pharmacol; 2005 Jan; 83(1):24-8. PubMed ID: 15759047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose.
    Jiang W; Zhu Z; Thompson HJ
    Mol Carcinog; 2008 Aug; 47(8):616-28. PubMed ID: 18247380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course changes in signaling pathways and protein synthesis in C2C12 myotubes following AMPK activation by AICAR.
    Williamson DL; Bolster DR; Kimball SR; Jefferson LS
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E80-9. PubMed ID: 16760336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of PAS kinase in regulating energy metabolism.
    Hao HX; Rutter J
    IUBMB Life; 2008 Apr; 60(4):204-9. PubMed ID: 18344204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the protein kinase B signaling pathway.
    Woodgett JR
    Curr Opin Cell Biol; 2005 Apr; 17(2):150-7. PubMed ID: 15780591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino acid sensitive TOR pathway from yeast to mammals.
    Dann SG; Thomas G
    FEBS Lett; 2006 May; 580(12):2821-9. PubMed ID: 16684541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of PI3K and cAMP/PKA signaling, and rapamycin-hypersensitivity in TGFbeta1 enhancement of FSH-stimulated steroidogenesis in rat ovarian granulosa cells.
    Chen YJ; Hsiao PW; Lee MT; Mason JI; Ke FC; Hwang JJ
    J Endocrinol; 2007 Feb; 192(2):405-19. PubMed ID: 17283241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothalamic mTOR signaling regulates food intake.
    Cota D; Proulx K; Smith KA; Kozma SC; Thomas G; Woods SC; Seeley RJ
    Science; 2006 May; 312(5775):927-30. PubMed ID: 16690869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress and mTORture signaling.
    Reiling JH; Sabatini DM
    Oncogene; 2006 Oct; 25(48):6373-83. PubMed ID: 17041623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sirtuins as potential targets for metabolic syndrome.
    Guarente L
    Nature; 2006 Dec; 444(7121):868-74. PubMed ID: 17167475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway.
    Chenal J; Pellerin L
    J Neurochem; 2007 Jul; 102(2):389-97. PubMed ID: 17394554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian target of rapamycin, a molecular target in squamous cell carcinomas of the head and neck.
    Amornphimoltham P; Patel V; Sodhi A; Nikitakis NG; Sauk JJ; Sausville EA; Molinolo AA; Gutkind JS
    Cancer Res; 2005 Nov; 65(21):9953-61. PubMed ID: 16267020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosignaling of mammalian Ste20-related kinases.
    Ling P; Lu TJ; Yuan CJ; Lai MD
    Cell Signal; 2008 Jul; 20(7):1237-47. PubMed ID: 18255267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
    Yang X; Yang C; Farberman A; Rideout TC; de Lange CF; France J; Fan MZ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.