BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 15581874)

  • 21. Stromal cells mediate retinoid-dependent functions essential for renal development.
    Mendelsohn C; Batourina E; Fung S; Gilbert T; Dodd J
    Development; 1999 Mar; 126(6):1139-48. PubMed ID: 10021334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional imaging reveals ureteric and mesenchymal defects in Fgfr2-mutant kidneys.
    Sims-Lucas S; Argyropoulos C; Kish K; McHugh K; Bertram JF; Quigley R; Bates CM
    J Am Soc Nephrol; 2009 Dec; 20(12):2525-33. PubMed ID: 19833900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching.
    Kuure S; Sainio K; Vuolteenaho R; Ilves M; Wartiovaara K; Immonen T; Kvist J; Vainio S; Sariola H
    Mech Dev; 2005 Jun; 122(6):765-80. PubMed ID: 15905075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development.
    Majumdar A; Vainio S; Kispert A; McMahon J; McMahon AP
    Development; 2003 Jul; 130(14):3175-85. PubMed ID: 12783789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2-Bax fetal mice mimics the renal-coloboma syndrome.
    Dziarmaga A; Clark P; Stayner C; Julien JP; Torban E; Goodyer P; Eccles M
    J Am Soc Nephrol; 2003 Nov; 14(11):2767-74. PubMed ID: 14569086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud.
    Bush KT; Sakurai H; Steer DL; Leonard MO; Sampogna RV; Meyer TN; Schwesinger C; Qiao J; Nigam SK
    Dev Biol; 2004 Feb; 266(2):285-98. PubMed ID: 14738877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fgfr1 and the IIIc isoform of Fgfr2 play critical roles in the metanephric mesenchyme mediating early inductive events in kidney development.
    Sims-Lucas S; Cusack B; Baust J; Eswarakumar VP; Masatoshi H; Takeuchi A; Bates CM
    Dev Dyn; 2011 Jan; 240(1):240-9. PubMed ID: 21128305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative role of phosphotyrosine kinase domains of c-ros and c-ret protooncogenes in metanephric development with respect to growth factors and matrix morphogens.
    Liu ZZ; Wada J; Kumar A; Carone FA; Takahashi M; Kanwar YS
    Dev Biol; 1996 Aug; 178(1):133-48. PubMed ID: 8812115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BMP receptor ALK3 controls collecting system development.
    Hartwig S; Bridgewater D; Di Giovanni V; Cain J; Mishina Y; Rosenblum ND
    J Am Soc Nephrol; 2008 Jan; 19(1):117-24. PubMed ID: 18178801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prorenin receptor controls renal branching morphogenesis via Wnt/β-catenin signaling.
    Song R; Janssen A; Li Y; El-Dahr S; Yosypiv IV
    Am J Physiol Renal Physiol; 2017 Mar; 312(3):F407-F417. PubMed ID: 28031172
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene.
    Brophy PD; Ostrom L; Lang KM; Dressler GR
    Development; 2001 Dec; 128(23):4747-56. PubMed ID: 11731455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deletion of fibroblast growth factor receptor 2 from the peri-wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux.
    Walker KA; Sims-Lucas S; Di Giovanni VE; Schaefer C; Sunseri WM; Novitskaya T; de Caestecker MP; Chen F; Bates CM
    PLoS One; 2013; 8(2):e56062. PubMed ID: 23409123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tight regulation of p53 activity by Mdm2 is required for ureteric bud growth and branching.
    Hilliard S; Aboudehen K; Yao X; El-Dahr SS
    Dev Biol; 2011 May; 353(2):354-66. PubMed ID: 21420949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mdm4 controls ureteric bud branching via regulation of p53 activity.
    Hilliard SA; Li Y; Dixon A; El-Dahr SS
    Mech Dev; 2020 Sep; 163():103616. PubMed ID: 32464196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of FGFRL1 and other FGF signaling proteins in early kidney development.
    Trueb B; Amann R; Gerber SD
    Cell Mol Life Sci; 2013 Jul; 70(14):2505-18. PubMed ID: 23112089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ablation of the epithelial-specific splicing factor Esrp1 results in ureteric branching defects and reduced nephron number.
    Bebee TW; Sims-Lucas S; Park JW; Bushnell D; Cieply B; Xing Y; Bates CM; Carstens RP
    Dev Dyn; 2016 Oct; 245(10):991-1000. PubMed ID: 27404344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney.
    Fisher CE; Michael L; Barnett MW; Davies JA
    Development; 2001 Nov; 128(21):4329-38. PubMed ID: 11684667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development.
    Keefe Davis T; Hoshi M; Jain S
    Mech Dev; 2013; 130(9-10):506-18. PubMed ID: 23542432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development.
    Walker KA; Sims-Lucas S; Bates CM
    Pediatr Nephrol; 2016 Jun; 31(6):885-95. PubMed ID: 26293980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expansion of the renal capsular stroma, ureteric bud branching defects and cryptorchidism in mice with Wilms tumor 1 gene deletion in the stromal compartment of the developing kidney.
    Weiss AC; Rivera-Reyes R; Englert C; Kispert A
    J Pathol; 2020 Nov; 252(3):290-303. PubMed ID: 32715478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.