These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1558191)

  • 41. Superoxide dismutase restores endothelium-dependent arteriolar dilatation during acute infusion of nicotine.
    Mayhan WG; Sharpe GM
    J Appl Physiol (1985); 1998 Oct; 85(4):1292-8. PubMed ID: 9760319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetylcholine-induced arteriolar dilation is reduced in streptozotocin-induced diabetic rats with motor nerve dysfunction.
    Terata K; Coppey LJ; Davidson EP; Dunlap JA; Gutterman DD; Yorek MA
    Br J Pharmacol; 1999 Oct; 128(3):837-43. PubMed ID: 10516670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endothelial cell calcium and vascular control.
    Falcone JC
    Med Sci Sports Exerc; 1995 Aug; 27(8):1165-9. PubMed ID: 7476061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Histamine-Induced Dilation of Isolated Porcine Retinal Arterioles: Role of Endothelium-Derived Hyperpolarizing Factor.
    Otani S; Nagaoka T; Omae T; Tanano I; Kamiya T; Ono S; Hein TW; Kuo L; Yoshida A
    Invest Ophthalmol Vis Sci; 2016 Sep; 57(11):4791-8. PubMed ID: 27618417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of nitric oxide and prostaglandins in the regulation of diaphragmatic arteriolar tone in the rat.
    Boczkowski J; Vicaut E; Danialou G; Aubier M
    J Appl Physiol (1985); 1994 Aug; 77(2):590-6. PubMed ID: 8002504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of insulin on the acetylcholine-induced hyperpolarization in the guinea pig mesenteric arterioles.
    Imaeda K; Okayama N; Okouchi M; Omi H; Kato T; Akao M; Imai S; Uranishi H; Takeuchi Y; Ohara H; Fukutomi T; Joh T; Itoh M
    J Diabetes Complications; 2004; 18(6):356-62. PubMed ID: 15531186
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of inhibition of nitric oxide production in a murine model of splanchnic artery occlusion shock.
    Ma XL; Johnson G; Lefer AM
    Arch Int Pharmacodyn Ther; 1991; 311():89-103. PubMed ID: 1789714
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO2 in vivo.
    Wang Q; Pelligrino DA; Koenig HM; Albrecht RF
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):944-51. PubMed ID: 7929657
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of the endothelium in regulation of vascular functions in two teleosts.
    Sverdrup A; Krüger PG; Helle KB
    Acta Physiol Scand; 1994 Oct; 152(2):219-33. PubMed ID: 7839865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting.
    Schrage WG; Woodman CR; Laughlin MH
    J Appl Physiol (1985); 2002 Mar; 92(3):901-11. PubMed ID: 11842020
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellular pathways of mast cell- and capsaicin-sensitive nerve-evoked ileal submucosal arteriolar dilations.
    Atwood L; James C; Morris GP; Vanner S
    Am J Physiol; 1998 Nov; 275(5):G1063-72. PubMed ID: 9815037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impaired conduction of vasodilation along arterioles in connexin40-deficient mice.
    de Wit C; Roos F; Bolz SS; Kirchhoff S; Krüger O; Willecke K; Pohl U
    Circ Res; 2000 Mar; 86(6):649-55. PubMed ID: 10747000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles.
    Rosenblum WI
    Stroke; 1986; 17(3):494-7. PubMed ID: 3715949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin.
    Edwards RM
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F183-9. PubMed ID: 3970208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cellular coupling and conducted vasomotor responses.
    Neild TO; Crane GJ
    Clin Exp Pharmacol Physiol; 2002 Jul; 29(7):626-9. PubMed ID: 12060108
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of endothelial cells in regulating hemoglobin-induced changes in lymphatic pumping.
    Elias RM; Eisenhoffer J; Johnston MG
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1880-7. PubMed ID: 1481912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of a lymphatic system in glucose absorption and the accompanying microvascular hyperemia.
    Steenbergen JM; Lash JM; Bohlen HG
    Am J Physiol; 1994 Oct; 267(4 Pt 1):G529-35. PubMed ID: 7943318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Lymphatic endothelial and smooth-muscle cells in tissue culture.
    Johnston MG; Walker MA
    In Vitro; 1984 Jul; 20(7):566-72. PubMed ID: 6432683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Venomotion modulates lymphatic pumping in the bat wing.
    Dongaonkar RM; Stewart RH; Laine GA; Davis MJ; Zawieja DC; Quick CM
    Am J Physiol Heart Circ Physiol; 2009 Jun; 296(6):H2015-21. PubMed ID: 19329767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.