BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15581924)

  • 1. Temporal properties of retinal ganglion cell responses to local transretinal current stimuli in the frog retina.
    Li L; Hayashida Y; Yagi T
    Vision Res; 2005 Jan; 45(2):263-73. PubMed ID: 15581924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode.
    Jensen RJ; Ziv OR; Rizzo JF
    J Neural Eng; 2005 Mar; 2(1):S16-21. PubMed ID: 15876650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thresholds for activation of rabbit retinal ganglion cells with relatively large, extracellular microelectrodes.
    Jensen RJ; Ziv OR; Rizzo JF
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1486-96. PubMed ID: 15790920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
    Fried SI; Hsueh HA; Werblin FS
    J Neurophysiol; 2006 Feb; 95(2):970-8. PubMed ID: 16236780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of high-level pulse train stimulation on retinal function.
    Cohen ED
    J Neural Eng; 2009 Jun; 6(3):035005. PubMed ID: 19458404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation.
    Tsai D; Morley JW; Suaning GJ; Lovell NH
    J Neurophysiol; 2009 Nov; 102(5):2982-93. PubMed ID: 19741103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of retinal ganglion cell activities evoked by temporally patterned electrical stimulation for the development of stimulus encoding strategies for retinal implants.
    Ryu SB; Ye JH; Lee JS; Goo YS; Kim KH
    Brain Res; 2009 Jun; 1275():33-42. PubMed ID: 19362077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina.
    O'Hearn TM; Sadda SR; Weiland JD; Maia M; Margalit E; Humayun MS
    Vision Res; 2006 Oct; 46(19):3198-204. PubMed ID: 16723150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
    Jensen RJ; Rizzo JF
    Exp Eye Res; 2006 Aug; 83(2):367-73. PubMed ID: 16616739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of ganglion cells to repetitive electrical stimulation of the retina.
    Jensen RJ; Rizzo JF
    J Neural Eng; 2007 Mar; 4(1):S1-6. PubMed ID: 17325407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal ganglion cell coding in simulated active vision.
    Amthor FR; Tootle JS; Gawne TJ
    Vis Neurosci; 2005; 22(6):789-806. PubMed ID: 16469188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electrical stimulation thresholds in normal and retinal degenerated mouse retina.
    Suzuki S; Humayun MS; Weiland JD; Chen SJ; Margalit E; Piyathaisere DV; de Juan E
    Jpn J Ophthalmol; 2004; 48(4):345-9. PubMed ID: 15295659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation in isolated rabbit retina.
    Shyu JS; Maia M; Weiland JD; Ohearn T; Chen SJ; Margalit E; Suzuki S; Humayun MS
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):290-8. PubMed ID: 17009488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of retinal ganglion cells in wild-type and rd1 mice through electrical stimulation of the retinal neural network.
    Jensen RJ; Rizzo JF
    Vision Res; 2008 Jun; 48(14):1562-8. PubMed ID: 18555890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of stimulus velocity on inhibition efficiency in the responses of the retinal ganglion cells in the frog].
    Khabibullin RD; Khabibullina LA; Mutygullin FM; Lantsman SA
    Fiziol Zh SSSR Im I M Sechenova; 1989 Jul; 75(7):904-10. PubMed ID: 2806665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Discharges of neurons of the frog tectum during electric stimulation of individual retinal ganglion cells].
    Kuras AV; Khusainoviene NP
    Neirofiziologiia; 1984; 16(6):829-35. PubMed ID: 6097825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of the inhibition in receptive fields of class 1 and 3 in the frog retina].
    Zhukov VA
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jan; 69(1):34-40. PubMed ID: 6600690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold suprachoroidal-transretinal stimulation current resulting in retinal damage in rabbits.
    Nakauchi K; Fujikado T; Kanda H; Kusaka S; Ozawa M; Sakaguchi H; Ikuno Y; Kamei M; Tano Y
    J Neural Eng; 2007 Mar; 4(1):S50-7. PubMed ID: 17325416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.