These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 15582665)

  • 21. Stk38 protein kinase preferentially inhibits TLR9-activated inflammatory responses by promoting MEKK2 ubiquitination in macrophages.
    Wen M; Ma X; Cheng H; Jiang W; Xu X; Zhang Y; Zhang Y; Guo Z; Yu Y; Xu H; Qian C; Cao X; An H
    Nat Commun; 2015 May; 6():7167. PubMed ID: 25981615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NDR functions as a physiological YAP1 kinase in the intestinal epithelium.
    Zhang L; Tang F; Terracciano L; Hynx D; Kohler R; Bichet S; Hess D; Cron P; Hemmings BA; Hergovich A; Schmitz-Rohmer D
    Curr Biol; 2015 Feb; 25(3):296-305. PubMed ID: 25601544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NDR1/STK38 potentiates NF-κB activation by its kinase activity.
    Shi DD; Shi H; Lu D; Li R; Zhang Y; Zhang J
    Cell Biochem Funct; 2012 Dec; 30(8):664-70. PubMed ID: 22674419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serine-threonine kinase 38 is regulated by glycogen synthase kinase-3 and modulates oxidative stress-induced cell death.
    Enomoto A; Kido N; Ito M; Takamatsu N; Miyagawa K
    Free Radic Biol Med; 2012 Jan; 52(2):507-15. PubMed ID: 22142472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ablation of the kinase NDR1 predisposes mice to the development of T cell lymphoma.
    Cornils H; Stegert MR; Hergovich A; Hynx D; Schmitz D; Dirnhofer S; Hemmings BA
    Sci Signal; 2010 Jun; 3(126):ra47. PubMed ID: 20551432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Mammalian STK38 in DNA Damage Response and Targeting for Radio-Sensitization.
    Fukasawa T; Enomoto A; Yoshizaki-Ogawa A; Sato S; Miyagawa K; Yoshizaki A
    Cancers (Basel); 2023 Mar; 15(7):. PubMed ID: 37046714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg?
    Centazzo M; Manganaro L; Alvisi G
    Viruses; 2023 Mar; 15(3):. PubMed ID: 36992421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of HIV-1 protease cleavage site from octapeptide sequence information using selected classifiers and hybrid descriptors.
    Onah E; Uzor PF; Ugwoke IC; Eze JU; Ugwuanyi ST; Chukwudi IR; Ibezim A
    BMC Bioinformatics; 2022 Nov; 23(1):466. PubMed ID: 36344934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effectively predicting HIV-1 protease cleavage sites by using an ensemble learning approach.
    Hu L; Li Z; Tang Z; Zhao C; Zhou X; Hu P
    BMC Bioinformatics; 2022 Oct; 23(1):447. PubMed ID: 36303135
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cleavage of TANK-Binding Kinase 1 by HIV-1 Protease Triggers Viral Innate Immune Evasion.
    Jeremiah SS; Miyakawa K; Matsunaga S; Nishi M; Kudoh A; Takaoka A; Sawasaki T; Ryo A
    Front Microbiol; 2021; 12():643407. PubMed ID: 33986734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting HIV-1 Protease Cleavage Sites With Positive-Unlabeled Learning.
    Li Z; Hu L; Tang Z; Zhao C
    Front Genet; 2021; 12():658078. PubMed ID: 33868387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The STK38-XPO1 axis, a new actor in physiology and cancer.
    Martin AP; Aushev VN; Zalcman G; Camonis JH
    Cell Mol Life Sci; 2021 Mar; 78(5):1943-1955. PubMed ID: 33145612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Emerging Roles of NDR1/2 in Infection and Inflammation.
    Ye X; Ong N; An H; Zheng Y
    Front Immunol; 2020; 11():534. PubMed ID: 32265942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A human endogenous retrovirus encoded protease potentially cleaves numerous cellular proteins.
    Rigogliuso G; Biniossek ML; Goodier JL; Mayer B; Pereira GC; Schilling O; Meese E; Mayer J
    Mob DNA; 2019; 10():36. PubMed ID: 31462935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages.
    Liu Z; Wu C; Pan Y; Liu H; Wang X; Yang Y; Gu M; Zhang Y; Wang X
    Sci Adv; 2019 Feb; 5(2):eaav0163. PubMed ID: 30775439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-translational Modification-Based Regulation of HIV Replication.
    Chen L; Keppler OT; Schölz C
    Front Microbiol; 2018; 9():2131. PubMed ID: 30254620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stk38 Modulates Rbm24 Protein Stability to Regulate Sarcomere Assembly in Cardiomyocytes.
    Liu J; Kong X; Lee YM; Zhang MK; Guo LY; Lin Y; Lim TK; Lin Q; Xu XQ
    Sci Rep; 2017 Mar; 7():44870. PubMed ID: 28322254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Roles of NDR Protein Kinases in Hippo Signalling.
    Hergovich A
    Genes (Basel); 2016 May; 7(5):. PubMed ID: 27213455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.
    Benko Z; Elder RT; Li G; Liang D; Zhao RY
    PLoS One; 2016; 11(3):e0151286. PubMed ID: 26982200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rassf5 and Ndr kinases regulate neuronal polarity through Par3 phosphorylation in a novel pathway.
    Yang R; Kong E; Jin J; Hergovich A; Püschel AW
    J Cell Sci; 2014 Aug; 127(Pt 16):3463-76. PubMed ID: 24928906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.