These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15582971)

  • 1. High energy-resolution electron energy-loss spectroscopy study of the electronic structures of Li- and Mg-doped alpha-rhombohedral boron.
    Terauchi M; Oguri A; Kimura K; Fujiwara A
    J Electron Microsc (Tokyo); 2004; 53(6):589-92. PubMed ID: 15582971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive studies of the electronic structure of pristine and potassium doped chrysene investigated by electron energy-loss spectroscopy.
    Roth F; Mahns B; Schönfelder R; Hampel S; Nohr M; Büchner B; Knupfer M
    J Chem Phys; 2012 Sep; 137(11):114508. PubMed ID: 22998272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of second-order nonlinear optical response in boron nitride nanocone: Li-doped effect.
    Wang WY; Ma NN; Wang CH; Zhang MY; Sun SL; Qiu YQ
    J Mol Graph Model; 2014 Mar; 48():28-35. PubMed ID: 24366003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valence control of α-rhombohedral boron by electronic doping.
    Dekura H; Shirai K; Katayama-Yoshida H
    J Phys Condens Matter; 2007 Sep; 19(36):365241. PubMed ID: 21694186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterial electronic structure investigation by valence electron energy loss spectroscopy - an example of doped ZnO nanowires.
    Wang J; Li Q; Ronning C; Stichtenoth D; Müller S; Tang D
    Micron; 2008 Aug; 39(6):703-8. PubMed ID: 18054241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the work function of buckled boron α-sheet by lithium adsorption: a first-principles investigation.
    Zheng B; Yu HT; Xie Y; Lian YF
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19690-701. PubMed ID: 25333913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On lithium doping in two stable nano-flakes of the B
    Hosseinian A; Vessally E; Babazadeh M; Edjlali L; Es'haghi M
    J Mol Graph Model; 2018 Jan; 79():213-222. PubMed ID: 29232629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films.
    Liu XM; Gutiérrez HR; Eklund PC
    J Phys Condens Matter; 2010 Aug; 22(33):334213. PubMed ID: 21386503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Li
    Tamboli S; Dhoble SJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Sep; 184():119-127. PubMed ID: 28494373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local boron environment in B-doped nanocrystalline diamond films.
    Turner S; Lu YG; Janssens SD; Da Pieve F; Lamoen D; Verbeeck J; Haenen K; Wagner P; Van Tendeloo G
    Nanoscale; 2012 Sep; 4(19):5960-4. PubMed ID: 22903371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted lithium-boron compounds under high pressure.
    Peng F; Miao M; Wang H; Li Q; Ma Y
    J Am Chem Soc; 2012 Nov; 134(45):18599-605. PubMed ID: 23088280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron momentum density of boron-doped carbon nano-onions studied by electron energy-loss spectroscopy.
    Feng Z; Ding W; Lin Y; Guo F; Zhang X; Song T; Li H; Liu C
    Phys Chem Chem Phys; 2021 Dec; 23(46):26343-26348. PubMed ID: 34788775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron-Doped Graphene Nanoribbons: Electronic Structure and Raman Fingerprint.
    Senkovskiy BV; Usachov DY; Fedorov AV; Marangoni T; Haberer D; Tresca C; Profeta G; Caciuc V; Tsukamoto S; Atodiresei N; Ehlen N; Chen C; Avila J; Asensio MC; Varykhalov AY; Nefedov A; Wöll C; Kim TK; Hoesch M; Fischer FR; Grüneis A
    ACS Nano; 2018 Aug; 12(8):7571-7582. PubMed ID: 30004663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How lithium atoms affect the first hyperpolarizability of BN edge-doped graphene.
    Song YD; Wu LM; Chen QL; Liu FK; Tang XW
    J Mol Model; 2016 Jan; 22(1):27. PubMed ID: 26748924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen adsorption on boron doped graphene: an ab initio study.
    Miwa RH; Martins TB; Fazzio A
    Nanotechnology; 2008 Apr; 19(15):155708. PubMed ID: 21825632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen- and boron-doped double-walled carbon nanotubes.
    Panchakarla LS; Govindaraj A; Rao CN
    ACS Nano; 2007 Dec; 1(5):494-500. PubMed ID: 19206671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and transport properties of boron-doped graphene nanoribbons.
    Martins TB; Miwa RH; da Silva AJ; Fazzio A
    Phys Rev Lett; 2007 May; 98(19):196803. PubMed ID: 17677646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.