These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 15583137)
1. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Ling SC; Fahrner PS; Greenough WT; Gelfand VI Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17428-33. PubMed ID: 15583137 [TBL] [Abstract][Full Text] [Related]
2. Direct observation of regulated ribonucleoprotein transport across the nurse cell/oocyte boundary. Mische S; Li M; Serr M; Hays TS Mol Biol Cell; 2007 Jun; 18(6):2254-63. PubMed ID: 17429069 [TBL] [Abstract][Full Text] [Related]
3. Transport of fragile X mental retardation protein via granules in neurites of PC12 cells. De Diego Otero Y; Severijnen LA; van Cappellen G; Schrier M; Oostra B; Willemsen R Mol Cell Biol; 2002 Dec; 22(23):8332-41. PubMed ID: 12417734 [TBL] [Abstract][Full Text] [Related]
4. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Palacios IM; St Johnston D Development; 2002 Dec; 129(23):5473-85. PubMed ID: 12403717 [TBL] [Abstract][Full Text] [Related]
5. The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway. Jeong JH; Nam YJ; Kim SY; Kim EG; Jeong J; Kim HK J Neurochem; 2007 Sep; 102(6):2073-2084. PubMed ID: 17587311 [TBL] [Abstract][Full Text] [Related]
6. The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Davidovic L; Jaglin XH; Lepagnol-Bestel AM; Tremblay S; Simonneau M; Bardoni B; Khandjian EW Hum Mol Genet; 2007 Dec; 16(24):3047-58. PubMed ID: 17881655 [TBL] [Abstract][Full Text] [Related]
7. Myosin Va is required for the transport of fragile X mental retardation protein (FMRP) granules. Lindsay AJ; McCaffrey MW Biol Cell; 2014 Feb; 106(2):57-71. PubMed ID: 24175909 [TBL] [Abstract][Full Text] [Related]
8. An RNA-based feed-forward mechanism ensures motor switching in oskar mRNA transport. Gáspár I; Phea LJ; McClintock MA; Heber S; Bullock SL; Ephrussi A J Cell Biol; 2023 Jul; 222(7):. PubMed ID: 37213090 [TBL] [Abstract][Full Text] [Related]
9. The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Pan L; Zhang YQ; Woodruff E; Broadie K Curr Biol; 2004 Oct; 14(20):1863-70. PubMed ID: 15498496 [TBL] [Abstract][Full Text] [Related]
10. Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Antar LN; Dictenberg JB; Plociniak M; Afroz R; Bassell GJ Genes Brain Behav; 2005 Aug; 4(6):350-9. PubMed ID: 16098134 [TBL] [Abstract][Full Text] [Related]
11. 5'-UTR mediated translational control of splicing assembly factor RNP-4F expression during development of the Drosophila central nervous system. Chen J; Yang JT; Doctor DL; Rawlins BA; Shields BC; Vaughn JC Gene; 2013 Oct; 528(2):154-62. PubMed ID: 23892091 [TBL] [Abstract][Full Text] [Related]
13. Assembly of endogenous oskar mRNA particles for motor-dependent transport in the Drosophila oocyte. Trucco A; Gaspar I; Ephrussi A Cell; 2009 Nov; 139(5):983-98. PubMed ID: 19945381 [TBL] [Abstract][Full Text] [Related]
14. Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos. Monzo K; Papoulas O; Cantin GT; Wang Y; Yates JR; Sisson JC Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18160-5. PubMed ID: 17110444 [TBL] [Abstract][Full Text] [Related]
15. Hecw controls oogenesis and neuronal homeostasis by promoting the liquid state of ribonucleoprotein particles. Fajner V; Giavazzi F; Sala S; Oldani A; Martini E; Napoletano F; Parazzoli D; Cesare G; Cerbino R; Maspero E; Vaccari T; Polo S Nat Commun; 2021 Sep; 12(1):5488. PubMed ID: 34531401 [TBL] [Abstract][Full Text] [Related]
16. Posterior localization of dynein and dorsal-ventral axis formation depend on kinesin in Drosophila oocytes. Brendza RP; Serbus LR; Saxton WM; Duffy JB Curr Biol; 2002 Sep; 12(17):1541-5. PubMed ID: 12225672 [TBL] [Abstract][Full Text] [Related]
17. The auto-inhibitory domain and ATP-independent microtubule-binding region of Kinesin heavy chain are major functional domains for transport in the Drosophila germline. Williams LS; Ganguly S; Loiseau P; Ng BF; Palacios IM Development; 2014 Jan; 141(1):176-86. PubMed ID: 24257625 [TBL] [Abstract][Full Text] [Related]
18. Direct observation of translational activation by a ribonucleoprotein granule. Chen R; Stainier W; Dufourt J; Lagha M; Lehmann R Nat Cell Biol; 2024 Aug; 26(8):1322-1335. PubMed ID: 38965420 [TBL] [Abstract][Full Text] [Related]
19. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. Glater EE; Megeath LJ; Stowers RS; Schwarz TL J Cell Biol; 2006 May; 173(4):545-57. PubMed ID: 16717129 [TBL] [Abstract][Full Text] [Related]