These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15583171)

  • 1. Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains.
    Zhang W; Shi L
    Microbiology (Reading); 2004 Dec; 150(Pt 12):4189-4197. PubMed ID: 15583171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of eukaryotic-type protein phosphatases in two streptomycete genomes.
    Shi L; Zhang W
    Microbiology (Reading); 2004 Jul; 150(Pt 7):2247-2256. PubMed ID: 15256567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A serine/threonine protein phosphatase-like protein, CaPTC8, from Candida albicans defines a new PPM subfamily.
    Fan J; Wu M; Jiang L; Shen SH
    Gene; 2009 Feb; 430(1-2):64-76. PubMed ID: 19049858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "PP2C7s", Genes Most Highly Elaborated in Photosynthetic Organisms, Reveal the Bacterial Origin and Stepwise Evolution of PPM/PP2C Protein Phosphatases.
    Kerk D; Silver D; Uhrig RG; Moorhead GB
    PLoS One; 2015; 10(8):e0132863. PubMed ID: 26241330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomics and evolution of protein phosphatases.
    Chen MJ; Dixon JE; Manning G
    Sci Signal; 2017 Apr; 10(474):. PubMed ID: 28400531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and evolution of chitinase genes in Streptomyces species: involvement of gene-duplication and domain-deletion.
    Saito A; Fujii T; Miyashita K
    Antonie Van Leeuwenhoek; 2003; 84(1):7-15. PubMed ID: 12906357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, evolution and expression of a second subfamily of protein phosphatase 2A catalytic subunit genes in the rice plant (Oryza sativa L.).
    Yu RM; Wong MM; Jack RW; Kong RY
    Planta; 2005 Nov; 222(5):757-68. PubMed ID: 16021503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary radiation pattern of novel protein phosphatases revealed by analysis of protein data from the completely sequenced genomes of humans, green algae, and higher plants.
    Kerk D; Templeton G; Moorhead GB
    Plant Physiol; 2008 Feb; 146(2):351-67. PubMed ID: 18156295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait.
    Shi L; Potts M; Kennelly PJ
    FEMS Microbiol Rev; 1998 Oct; 22(4):229-53. PubMed ID: 9862122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Bacillus subtilis regulator protein SpoIIE shares functional and structural similarities with eukaryotic protein phosphatases 2C.
    Schroeter R; Schlisio S; Lucet I; Yudkin M; Borriss R
    FEMS Microbiol Lett; 1999 May; 174(1):117-23. PubMed ID: 10234829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues.
    Bork P; Brown NP; Hegyi H; Schultz J
    Protein Sci; 1996 Jul; 5(7):1421-5. PubMed ID: 8819174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2).
    Ogawara H; Aoyagi N; Watanabe M; Urabe H
    Microbiology (Reading); 1999 Dec; 145 ( Pt 12)():3343-3352. PubMed ID: 10627033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes.
    Theissen G; Kim JT; Saedler H
    J Mol Evol; 1996 Nov; 43(5):484-516. PubMed ID: 8875863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phylogenomic study of the general stress response sigma factor sigmaB of Bacillus subtilis and its regulatory proteins.
    Mittenhuber G
    J Mol Microbiol Biotechnol; 2002 Jul; 4(4):427-52. PubMed ID: 12125823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon.
    Cao J; Jiang M; Li P; Chu Z
    BMC Genomics; 2016 Mar; 17():175. PubMed ID: 26935448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of protein phosphatases in plants and animals.
    Moorhead GB; De Wever V; Templeton G; Kerk D
    Biochem J; 2009 Jan; 417(2):401-9. PubMed ID: 19099538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the multifunctional protein tyrosine phosphatase family.
    Pils B; Schultz J
    Mol Biol Evol; 2004 Apr; 21(4):625-31. PubMed ID: 14739250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide survey of prokaryotic O-protein phosphatases.
    Bhaduri A; Sowdhamini R
    J Mol Biol; 2005 Sep; 352(3):736-52. PubMed ID: 16095610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor protein-tyrosine phosphatases: origin of domains (catalytic domain, Ig-related domain, fibronectin type III module) based on the sequence of the sponge Geodia cydonium.
    Müller CI; Blumbach B; Krasko A; Schröder HC
    Gene; 2001 Jan; 262(1-2):221-30. PubMed ID: 11179687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.