These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15583171)

  • 21. Evolution of the metazoan protein phosphatase 2C superfamily.
    Stern A; Privman E; Rasis M; Lavi S; Pupko T
    J Mol Evol; 2007 Jan; 64(1):61-70. PubMed ID: 17160364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions.
    Shi L
    Front Biosci; 2004 May; 9():1382-97. PubMed ID: 14977554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade.
    Gallagher KA; Jensen PR
    BMC Genomics; 2015 Nov; 16():960. PubMed ID: 26578069
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a family of bacterial response regulator aspartyl-phosphate (RAP) phosphatases.
    Reizer J; Reizer A; Perego M; Saier MH
    Microb Comp Genomics; 1997; 2(2):103-11. PubMed ID: 9689219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mining oomycete proteomes for phosphatome leads to the identification of specific expanded phosphatases in oomycetes.
    Qiu M; Sun Y; Tu S; Li H; Yang X; Zhao H; Yin M; Li Y; Ye W; Wang M; Wang Y
    Mol Plant Pathol; 2024 Mar; 25(3):e13425. PubMed ID: 38462784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs.
    Dong JH; Wen JF; Tian HF
    Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.
    Liu BA
    Methods Mol Biol; 2017; 1555():59-75. PubMed ID: 28092027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A framework for classification of prokaryotic protein kinases.
    Tyagi N; Anamika K; Srinivasan N
    PLoS One; 2010 May; 5(5):e10608. PubMed ID: 20520783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Serine-threonine protein phosphatases from Bacillus subtilis].
    Obuchowski M
    Postepy Biochem; 2005; 51(1):95-104. PubMed ID: 16209347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns.
    Philippon H; Brochier-Armanet C; Perrière G
    BMC Evol Biol; 2015 Oct; 15():226. PubMed ID: 26482564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases.
    Adler E; Donella-Deana A; Arigoni F; Pinna LA; Stragler P
    Mol Microbiol; 1997 Jan; 23(1):57-62. PubMed ID: 9004220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272.
    Rajkarnikar A; Kwon HJ; Ryu YW; Suh JW
    Curr Microbiol; 2006 Sep; 53(3):204-8. PubMed ID: 16874544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase.
    Rigden DJ
    FEBS Lett; 2003 Feb; 536(1-3):77-84. PubMed ID: 12586342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution.
    Das AK; Helps NR; Cohen PT; Barford D
    EMBO J; 1996 Dec; 15(24):6798-809. PubMed ID: 9003755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domain architectural census of eukaryotic gene products containing O-protein phosphatases.
    Bhaduri A; Sowdhamini R
    Gene; 2006 Feb; 366(2):246-55. PubMed ID: 16253443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity, function and evolution of genes coding for putative Ni-containing superoxide dismutases.
    Dupont CL; Neupane K; Shearer J; Palenik B
    Environ Microbiol; 2008 Jul; 10(7):1831-43. PubMed ID: 18412551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural analysis of the PP2C phosphatase tPphA from Thermosynechococcus elongatus: a flexible flap subdomain controls access to the catalytic site.
    Schlicker C; Fokina O; Kloft N; Grüne T; Becker S; Sheldrick GM; Forchhammer K
    J Mol Biol; 2008 Feb; 376(2):570-81. PubMed ID: 18164312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo.
    Kim J; Lee PG; Jung EO; Kim BG
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):60-67. PubMed ID: 28821467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MAP kinase phosphatases.
    Theodosiou A; Ashworth A
    Genome Biol; 2002 Jun; 3(7):REVIEWS3009. PubMed ID: 12184814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily.
    Fetrow JS; Siew N; Skolnick J
    FASEB J; 1999 Oct; 13(13):1866-74. PubMed ID: 10506591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.