BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 15583715)

  • 1. Algorithmic self-assembly of DNA Sierpinski triangles.
    Rothemund PW; Papadakis N; Winfree E
    PLoS Biol; 2004 Dec; 2(12):e424. PubMed ID: 15583715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules.
    Mao C; LaBean TH; Relf JH; Seeman NC
    Nature; 2000 Sep; 407(6803):493-6. PubMed ID: 11028996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern.
    Fujibayashi K; Hariadi R; Park SH; Winfree E; Murata S
    Nano Lett; 2008 Jul; 8(7):1791-7. PubMed ID: 18162000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum coding framework for error detection in the self-assembly of the Sierpinski triangle.
    Mashreghian Arani Z; Hashempour M; Lombardi F
    IET Nanobiotechnol; 2011 Sep; 5(3):61-8. PubMed ID: 21913787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments.
    Winfree E
    J Biomol Struct Dyn; 2000; 17 Suppl 1():263-70. PubMed ID: 22607433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two computational primitives for algorithmic self-assembly: copying and counting.
    Barish RD; Rothemund PW; Winfree E
    Nano Lett; 2005 Dec; 5(12):2586-92. PubMed ID: 16351220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An information-bearing seed for nucleating algorithmic self-assembly.
    Barish RD; Schulman R; Rothemund PW; Winfree E
    Proc Natl Acad Sci U S A; 2009 Apr; 106(15):6054-9. PubMed ID: 19321429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of elementary functions
    Raza MT; Tandon A; Park S; Lee S; Nguyen TBN; Vu THN; Jo S; Nam Y; Jeon S; Jeong JH; Park SH
    Nanoscale; 2021 Dec; 13(46):19376-19384. PubMed ID: 34812465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3-Input/1-Output Logic Implementation Demonstrated by DNA Algorithmic Self-Assembly.
    Cho H; Mitta SB; Song Y; Son J; Park S; Ha TH; Park SH
    ACS Nano; 2018 May; 12(5):4369-4377. PubMed ID: 29683650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing Redundancy Exponentially Reduces Error Rates during Algorithmic Self-Assembly.
    Schulman R; Wright C; Winfree E
    ACS Nano; 2015 Jun; 9(6):5760-71. PubMed ID: 25965580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptavidin-Decorated Algorithmic DNA Lattices Constructed by Substrate-Assisted Growth Method.
    Mitta SB; Han S; Vellampatti S; Tandon A; Shin J; Ha TH; Park SH
    ACS Biomater Sci Eng; 2018 Oct; 4(10):3617-3623. PubMed ID: 33450799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
    Woods D; Doty D; Myhrvold C; Hui J; Zhou F; Yin P; Winfree E
    Nature; 2019 Mar; 567(7748):366-372. PubMed ID: 30894725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of punctures in DNA self-assembly under forward growth.
    Hashempour M; Arani ZM; Lombardi F
    IEEE Trans Nanobioscience; 2008 Jun; 7(2):120-32. PubMed ID: 18556260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary representation of N (N = 1 or 2)-input and 1-output algorithmic self-assembly demonstrated by DNA.
    Park S; Tandon A; Cho HJ; Raza MT; Lee SJ; Chopade P; Ha TH; Park SH
    Nanotechnology; 2019 Nov; 31(8):085604. PubMed ID: 31689698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel growth and healing of DNA self-assembly for interconnects.
    Hashempour M; Mashreghian Arani Z; Lombardi F
    IET Nanobiotechnol; 2010 Mar; 4(1):19-28. PubMed ID: 20170255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles.
    Kim J; Ha TH; Park SH
    Nanoscale; 2015 Aug; 7(29):12336-42. PubMed ID: 26147712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective algorithm to encrypt information based on self-assembly of DNA tiles.
    Hirabayashi M; Kojima H; Oiwa K
    Nucleic Acids Symp Ser (Oxf); 2009; (53):79-80. PubMed ID: 19749269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel generalized design methodology and realization of Boolean operations using DNA.
    Zoraida BS; Arock M; Ronald BS; Ponalagusamy R
    Biosystems; 2009 Sep; 97(3):146-53. PubMed ID: 19505531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.