BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15584023)

  • 1. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis.
    Zamboni N; Fischer E; Muffler A; Wyss M; Hohmann HP; Sauer U
    Biotechnol Bioeng; 2005 Jan; 89(2):219-32. PubMed ID: 15584023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of glucose-6-phosphate dehydrogenase enhances riboflavin production in Bacillus subtilis.
    Duan YX; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1907-14. PubMed ID: 19779711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid.
    Sauer U; Cameron DC; Bailey JE
    Biotechnol Bioeng; 1998 Jul; 59(2):227-38. PubMed ID: 10099333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture.
    Rühl M; Zamboni N; Sauer U
    Biotechnol Bioeng; 2010 Mar; 105(4):795-804. PubMed ID: 19882734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Zhao X
    FEMS Microbiol Lett; 2007 Jan; 266(2):224-30. PubMed ID: 17233734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Over-expression of glucose dehydrogenase improves cell growth and riboflavin production in Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Shi S; Zhao X
    Biotechnol Lett; 2006 Oct; 28(20):1667-72. PubMed ID: 16912926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redirection electron flow to high coupling efficiency of terminal oxidase to enhance riboflavin biosynthesis.
    Li XJ; Chen T; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):374-83. PubMed ID: 16736087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum.
    Wang Z; Chen T; Ma X; Shen Z; Zhao X
    Bioresour Technol; 2011 Feb; 102(4):3934-40. PubMed ID: 21194928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Relationship between the secondary structure and the regulatory activity of the leader region of the riboflavin biosynthesis operon in Bacillus subtilis].
    Mironov AS; Karelov DV; Solov'eva IM; Eremina SIu; Errais-Lopes L; Kreneva RA; Perumov DA
    Genetika; 2008 Apr; 44(4):467-73. PubMed ID: 18666549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy.
    Huang H; Ridgway D; Gu T; Moo-Young M
    Bioprocess Biosyst Eng; 2004 Dec; 27(1):63-9. PubMed ID: 15645311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp. ATCC 39727.
    Gunnarsson N; Bruheim P; Nielsen J
    Biotechnol Bioeng; 2004 Dec; 88(5):652-63. PubMed ID: 15472928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of riboflavin production in Bacillus subtilis via in vitro and in vivo metabolic engineering of pentose phosphate pathway.
    Zhang M; Zhao X; Chen X; Li M; Wang X
    Biotechnol Lett; 2021 Dec; 43(12):2209-2216. PubMed ID: 34606014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis].
    Gershanovich VN; Kukanova AIa; Galushkina ZM; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2000; (3):3-7. PubMed ID: 10975072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs.
    Wu QL; Chen T; Gan Y; Chen X; Zhao XM
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):783-94. PubMed ID: 17576552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis.
    Zamboni N; Mouncey N; Hohmann HP; Sauer U
    Metab Eng; 2003 Jan; 5(1):49-55. PubMed ID: 12749844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway.
    Oldiges M; Kunze M; Degenring D; Sprenger GA; Takors R
    Biotechnol Prog; 2004; 20(6):1623-33. PubMed ID: 15575692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system].
    Kreneva RA; Karelov DV; Korol'kova NV; Mironov AS; Perumov DA
    Genetika; 2009 Oct; 45(10):1420-4. PubMed ID: 19947554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression, purification and characterization of a recombinant secretary catalase from Bacillus subtilis.
    Shi X; Feng M; Zhao Y; Guo X; Zhou P
    Biotechnol Lett; 2008 Jan; 30(1):181-6. PubMed ID: 17876537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.