These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 15584418)
1. Haemolymph [Na+] and [Cl-] loss in Gammarus fossarum exposed in situ to a wide range of acidic streams. Felten V; Guerold F Dis Aquat Organ; 2004 Oct; 61(1-2):113-21. PubMed ID: 15584418 [TBL] [Abstract][Full Text] [Related]
2. Physiological recovery from episodic acid stress does not mean population recovery of Gammarus fossarum. Felten V; Baudoin JM; Guérold F Chemosphere; 2006 Nov; 65(6):988-98. PubMed ID: 16678237 [TBL] [Abstract][Full Text] [Related]
3. Short-term physiological responses to a severe acid stress in three macroinvertebrate species: a comparative study. Felten V; Guérold F Chemosphere; 2006 Jun; 63(9):1427-35. PubMed ID: 16303164 [TBL] [Abstract][Full Text] [Related]
4. Hyperventilation and loss of hemolymph Na+ and Cl- in the freshwater amphipod Gammarus fossarum exposed to acid stress: a preliminary study. Felten V; Guerold F Dis Aquat Organ; 2001 May; 45(1):77-80. PubMed ID: 11411648 [TBL] [Abstract][Full Text] [Related]
5. Physiological and behavioural responses of Gammarus pulex exposed to acid stress. Felten V; Charmantier G; Charmantier-Daures M; Aujoulat F; Garric J; Geffard O Comp Biochem Physiol C Toxicol Pharmacol; 2008 Mar; 147(2):189-97. PubMed ID: 17936078 [TBL] [Abstract][Full Text] [Related]
6. Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Felten V; Charmantier G; Mons R; Geffard A; Rousselle P; Coquery M; Garric J; Geffard O Aquat Toxicol; 2008 Feb; 86(3):413-25. PubMed ID: 18241939 [TBL] [Abstract][Full Text] [Related]
7. Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver. Arce Funck J; Danger M; Gismondi E; Cossu-Leguille C; Guérold F; Felten V Aquat Toxicol; 2013 Oct; 142-143():73-84. PubMed ID: 23962677 [TBL] [Abstract][Full Text] [Related]
8. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake. Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826 [TBL] [Abstract][Full Text] [Related]
9. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry. Kirby CS; McInerney B; Turner MD Sci Total Environ; 2008 Apr; 393(2-3):249-61. PubMed ID: 18258282 [TBL] [Abstract][Full Text] [Related]
10. Cellular and molecular osmoregulatory responses to cadmium exposure in Gammarus fossarum (Crustacea, Amphipoda). Issartel J; Boulo V; Wallon S; Geffard O; Charmantier G Chemosphere; 2010 Oct; 81(6):701-10. PubMed ID: 20843535 [TBL] [Abstract][Full Text] [Related]
11. Acute physiological responses of the freshwater snail Elimia flava (Mollusca: Pleuroceridae) to environmental pH and calcium. Ewald ML; Feminella JW; Lenertz KK; Henry RP Comp Biochem Physiol C Toxicol Pharmacol; 2009 Aug; 150(2):237-45. PubMed ID: 19426831 [TBL] [Abstract][Full Text] [Related]
13. Response of Gammarus pulex and Baetis rhodani to springtime acid episodes in humic brooks. Andrén CM; Eriksson Wiklund AK Sci Total Environ; 2013 Oct; 463-464():690-9. PubMed ID: 23850659 [TBL] [Abstract][Full Text] [Related]
14. Osmoregulatory responses to cadmium in reference and historically metal contaminated Gammarus fossarum (Crustacea, Amphipoda) populations. Dayras P; Charmantier G; Chaumot A; Vigneron A; Coquery M; Quéau H; Artells E; Lignot JH; Geffard O; Issartel J Chemosphere; 2017 Aug; 180():412-422. PubMed ID: 28419954 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. Donini A; O'Donnell MJ J Exp Biol; 2005 Feb; 208(Pt 4):603-10. PubMed ID: 15695753 [TBL] [Abstract][Full Text] [Related]
16. Effects of stream acidification on fungal biomass in decaying beech leaves and leaf palatability. Dangles O; Chauvet E Water Res; 2003 Feb; 37(3):533-8. PubMed ID: 12688687 [TBL] [Abstract][Full Text] [Related]
17. Acute toxicity of ammonia and its effects on the haemolymph osmolality, ammonia-N, pH and ionic composition of early juvenile mud crabs, Scylla serrata (Forskål). Romano N; Zeng C Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):278-85. PubMed ID: 17540593 [TBL] [Abstract][Full Text] [Related]
18. Osmotic and ionic haemolymph concentrations in the Baltic Sea amphipod Gammarus oceanicus in relation to water salinity. Normant M; Kubicka M; Lapucki T; Czarnowski W; Michalowska M Comp Biochem Physiol A Mol Integr Physiol; 2005 May; 141(1):94-9. PubMed ID: 15921939 [TBL] [Abstract][Full Text] [Related]
19. Ion regulatory patterns of mosquito larvae collected from breeding sites in the Amazon rain forest. Patrick ML; Ferreira RL; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL Physiol Biochem Zool; 2002; 75(3):215-22. PubMed ID: 12177825 [TBL] [Abstract][Full Text] [Related]
20. Water chemistry and its effects on the physiology and survival of Atlantic salmon Salmo salar smolts. Liebich T; McCormick SD; Kircheis D; Johnson K; Regal R; Hrabik T J Fish Biol; 2011 Aug; 79(2):502-19. PubMed ID: 21781105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]