BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15585078)

  • 1. Proteomic analysis of human breast cancer tissue with laser-capture microdissection and reverse-phase protein microarrays.
    Cowherd SM; Espina VA; Petricoin EF; Liotta LA
    Clin Breast Cancer; 2004 Dec; 5(5):385-92. PubMed ID: 15585078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of proteomic analysis to monitor responses to biological therapies.
    Espina V; Dettloff KA; Cowherd S; Petricoin EF; Liotta LA
    Expert Opin Biol Ther; 2004 Jan; 4(1):83-93. PubMed ID: 14680471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser capture microdissection and advanced molecular analysis of human breast cancer.
    Fuller AP; Palmer-Toy D; Erlander MG; Sgroi DC
    J Mammary Gland Biol Neoplasia; 2003 Jul; 8(3):335-45. PubMed ID: 14973377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein pathway activation mapping of brain metastasis from lung and breast cancers reveals organ type specific drug target activation.
    Improta G; Zupa A; Fillmore H; Deng J; Aieta M; Musto P; Liotta LA; Broaddus W; Petricoin EF; Wulfkuhle JD
    J Proteome Res; 2011 Jul; 10(7):3089-97. PubMed ID: 21574647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of laser microdissection and reverse-phase protein microarrays to the molecular profiling of cancer signal pathway networks in the tissue microenvironment.
    Espina V; Wulfkuhle J; Liotta LA
    Clin Lab Med; 2009 Mar; 29(1):1-13. PubMed ID: 19389547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining laser capture microdissection and proteomics: methodologies and clinical applications.
    Xu BJ
    Proteomics Clin Appl; 2010 Feb; 4(2):116-23. PubMed ID: 21137037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology.
    Cha S; Imielinski MB; Rejtar T; Richardson EA; Thakur D; Sgroi DC; Karger BL
    Mol Cell Proteomics; 2010 Nov; 9(11):2529-44. PubMed ID: 20739354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining laser capture microdissection and proteomics techniques.
    Mustafa D; Kros JM; Luider T
    Methods Mol Biol; 2008; 428():159-78. PubMed ID: 18287773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of laser capture microdissected cells by 2-dimensional gel electrophoresis.
    Zhang D; Koay ES
    Methods Mol Biol; 2008; 428():77-91. PubMed ID: 18287769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis in human breast cancer: identification of a characteristic protein expression profile of malignant breast epithelium.
    Hudelist G; Singer CF; Pischinger KI; Kaserer K; Manavi M; Kubista E; Czerwenka KF
    Proteomics; 2006 Mar; 6(6):1989-2002. PubMed ID: 16470630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection.
    Neubauer H; Clare SE; Kurek R; Fehm T; Wallwiener D; Sotlar K; Nordheim A; Wozny W; Schwall GP; Poznanović S; Sastri C; Hunzinger C; Stegmann W; Schrattenholz A; Cahill MA
    Electrophoresis; 2006 May; 27(9):1840-52. PubMed ID: 16645950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The advantage of laser-capture microdissection over whole tissue analysis in proteomic profiling studies.
    De Marchi T; Braakman RB; Stingl C; van Duijn MM; Smid M; Foekens JA; Luider TM; Martens JW; Umar A
    Proteomics; 2016 May; 16(10):1474-85. PubMed ID: 27030549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser capture microdissection applications in breast cancer proteomics.
    Braakman RB; Luider TM; Martens JW; Foekens JA; Umar A
    Methods Mol Biol; 2011; 755():143-54. PubMed ID: 21761300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining the "Sibling Technologies" of Laser Capture Microdissection and Reverse Phase Protein Microarrays.
    Mueller C; Davis JB; Liotta LA
    Adv Exp Med Biol; 2019; 1188():95-111. PubMed ID: 31820385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated laser capture microdissection for tissue proteomics.
    Rodriguez AS; Espina BH; Espina V; Liotta LA
    Methods Mol Biol; 2008; 441():71-90. PubMed ID: 18370312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy.
    Wulfkuhle JD; Speer R; Pierobon M; Laird J; Espina V; Deng J; Mammano E; Yang SX; Swain SM; Nitti D; Esserman LJ; Belluco C; Liotta LA; Petricoin EF
    J Proteome Res; 2008 Apr; 7(4):1508-17. PubMed ID: 18257519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse phase protein arrays: mapping the path towards personalized medicine.
    Gallagher RI; Espina V
    Mol Diagn Ther; 2014 Dec; 18(6):619-30. PubMed ID: 25358623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse phase protein microarrays for theranostics and patient-tailored therapy.
    Espina V; Wulfkuhle J; Calvert VS; Liotta LA; Petricoin EF
    Methods Mol Biol; 2008; 441():113-28. PubMed ID: 18370315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics of breast cancer: enhanced expression of cytokeratin19 in human epidermal growth factor receptor type 2 positive breast tumors.
    Zhang DH; Tai LK; Wong LL; Sethi SK; Koay ES
    Proteomics; 2005 May; 5(7):1797-805. PubMed ID: 15825149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic patterns for cancer diagnosis--promise and challenges.
    Whiteley GR
    Mol Biosyst; 2006 Aug; 2(8):358-63. PubMed ID: 16880955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.