BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 15585221)

  • 21. Synthesis and in vitro bioactivity of bredigite powders.
    Wu C; Chang J
    J Biomater Appl; 2007 Jan; 21(3):251-63. PubMed ID: 16543286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.
    Behnamghader A; Bagheri N; Raissi B; Moztarzadeh F
    J Mater Sci Mater Med; 2008 Jan; 19(1):197-201. PubMed ID: 17597356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings.
    Takahashi K; van den Beucken JJ; Wolke JG; Hayakawa T; Nishiyama N; Jansen JA
    J Biomed Mater Res A; 2008 Mar; 84(3):682-90. PubMed ID: 17635019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution.
    Sultana R; Hamada K; Ichikawa T; Asaoka K
    Biomed Mater Eng; 2009; 19(2-3):193-204. PubMed ID: 19581714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.
    Ning CQ; Zhou Y
    Biomaterials; 2004 Aug; 25(17):3379-87. PubMed ID: 15020110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of Mg2Si thermoelectric materials by mechanical alloying and spark-plasma sintering process.
    Lee CH; Lee SH; Chun SY; Lee SJ
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3429-32. PubMed ID: 17252782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal chemistry of hydroxyapatite deposited on titanium by sputtering technique.
    Ozeki K; Yuhta T; Aoki H; Nishimura I; Fukui Y
    Biomed Mater Eng; 2000; 10(3-4):221-7. PubMed ID: 11202150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatibility of dense hydroxyapatite prepared using an SPS process.
    Nakahira A; Tamai M; Aritani H; Nakamura S; Yamashita K
    J Biomed Mater Res; 2002 Dec; 62(4):550-7. PubMed ID: 12221703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of nanohydroxyapatite microspheres for medical applications.
    Mateus AY; Barrias CC; Ribeiro C; Ferraz MP; Monteiro FJ
    J Biomed Mater Res A; 2008 Aug; 86(2):483-93. PubMed ID: 17975824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid.
    Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M
    Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrolysis of tetracalcium phosphate under a near-constant-composition condition--effects of pH and particle size.
    Chow LC; Markovic M; Frukhtbeyn SA; Takagi S
    Biomaterials; 2005 Feb; 26(4):393-401. PubMed ID: 15275813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method.
    Suchanek WL; Byrappa K; Shuk P; Riman RE; Janas VF; TenHuisen KS
    Biomaterials; 2004 Aug; 25(19):4647-57. PubMed ID: 15120511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spark plasma sintering of hydroxyapatite powders.
    Gu YW; Loh NH; Kho KA; Tor SB; Cheang P
    Biomaterials; 2002 Jan; 23(1):37-43. PubMed ID: 11762852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates.
    Li Y; Kong F; Weng W
    J Biomed Mater Res B Appl Biomater; 2009 May; 89(2):508-517. PubMed ID: 18937266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties.
    Uo M; Hasegawa T; Akasaka T; Tanaka I; Munekane F; Omori M; Kimura H; Nakatomi R; Soga K; Kogo Y; Watari F
    Biomed Mater Eng; 2009; 19(1):11-7. PubMed ID: 19458441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro dissolution of plasma-sprayed hydroxyapatite coatings with different characteristics: experimental study and modeling.
    Mohammadi Z; Ziaei-Moayyed AA; Sheikh-Mehdi Mesgar A
    Biomed Mater; 2008 Mar; 3(1):015006. PubMed ID: 18458493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioactive glass-based composites for the production of dense sintered bodies and porous scaffolds.
    Bellucci D; Sola A; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2138-51. PubMed ID: 23498242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition.
    Manafi SA; Yazdani B; Rahimiopour MR; Sadrnezhaad SK; Amin MH; Razavi M
    Biomed Mater; 2008 Jun; 3(2):025002. PubMed ID: 18458367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sintering mechanism of the CaF2 on hydroxyapatite by a 10.6-l microm CO2 laser.
    Wu CC; Roan RT; Chen JH
    Lasers Surg Med; 2002; 31(5):333-8. PubMed ID: 12430150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.