These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 15585224)
1. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Kawashita M; Tanaka M; Kokubo T; Inoue Y; Yao T; Hamada S; Shinjo T Biomaterials; 2005 May; 26(15):2231-8. PubMed ID: 15585224 [TBL] [Abstract][Full Text] [Related]
2. Enzymatic preparation of hollow magnetite microspheres for hyperthermic treatment of cancer. Kawashita M; Sadaoka K; Kokubo T; Saito T; Takano M; Araki N; Hiraoka M J Mater Sci Mater Med; 2006 Jul; 17(7):605-10. PubMed ID: 16770544 [TBL] [Abstract][Full Text] [Related]
3. In vitro heat generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field. Kawashita M; Domi S; Saito Y; Aoki M; Ebisawa Y; Kokubo T; Saito T; Takano M; Araki N; Hiraoka M J Mater Sci Mater Med; 2008 May; 19(5):1897-903. PubMed ID: 17914614 [TBL] [Abstract][Full Text] [Related]
4. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Zhao DL; Zhang HL; Zeng XW; Xia QS; Tang JT Biomed Mater; 2006 Dec; 1(4):198-201. PubMed ID: 18458406 [TBL] [Abstract][Full Text] [Related]
5. Magnetic SiO2 gel microspheres for arterial embolization hyperthermia. Li Z; Kawashita M; Araki N; Mitsumori M; Hiraoka M; Doi M Biomed Mater; 2010 Dec; 5(6):065010. PubMed ID: 21060148 [TBL] [Abstract][Full Text] [Related]
6. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics. Bretcanu O; Spriano S; Verné E; Cöisson M; Tiberto P; Allia P Acta Biomater; 2005 Jul; 1(4):421-9. PubMed ID: 16701823 [TBL] [Abstract][Full Text] [Related]
7. Sol-gel synthesis, characterization, and in vitro compatibility of iron nanoparticle-encapsulating silica microspheres for hyperthermia in cancer therapy. Li Z; Kawashita M; Kudo TA; Kanetaka H J Mater Sci Mater Med; 2012 Oct; 23(10):2461-9. PubMed ID: 22890516 [TBL] [Abstract][Full Text] [Related]
8. PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer. Kawashita M; Kawamura K; Li Z Acta Biomater; 2010 Aug; 6(8):3187-92. PubMed ID: 20197125 [TBL] [Abstract][Full Text] [Related]
9. A heat-generating bioactive glass-ceramic for hyperthermia. Ohura K; Ikenaga M; Nakamura T; Yamamuro T; Ebisawa Y; Kokubo T; Kotoura Y; Oka M J Appl Biomater; 1991; 2(3):153-9. PubMed ID: 10149080 [TBL] [Abstract][Full Text] [Related]
10. A simple one-pot synthesis of single-crystalline magnetite hollow spheres from a single iron precursor. Guan N; Wang Y; Sun D; Xu J Nanotechnology; 2009 Mar; 20(10):105603. PubMed ID: 19417523 [TBL] [Abstract][Full Text] [Related]
11. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune-response induction in transplanted syngeneic rats. Kawai N; Ito A; Nakahara Y; Futakuchi M; Shirai T; Honda H; Kobayashi T; Kohri K Prostate; 2005 Sep; 64(4):373-81. PubMed ID: 15754344 [TBL] [Abstract][Full Text] [Related]
12. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
13. In vitro assessment of poly(methylmethacrylate)-based bone cement containing magnetite nanoparticles for hyperthermia treatment of bone tumor. Li Z; Kawamura K; Kawashita M; Kudo TA; Kanetaka H; Hiraoka M J Biomed Mater Res A; 2012 Oct; 100(10):2537-45. PubMed ID: 22528664 [TBL] [Abstract][Full Text] [Related]
15. Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2. Ebisawa Y; Miyaji F; Kokubo T; Ohura K; Nakamura T Biomaterials; 1997 Oct; 18(19):1277-84. PubMed ID: 9307216 [TBL] [Abstract][Full Text] [Related]
16. Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. Le Renard PE; Buchegger F; Petri-Fink A; Bosman F; Rüfenacht D; Hofmann H; Doelker E; Jordan O Int J Hyperthermia; 2009 May; 25(3):229-39. PubMed ID: 19437238 [TBL] [Abstract][Full Text] [Related]
17. Enhanced magnetization in highly crystalline and atomically mixed bcc Fe-Co nanoalloys prepared by hydrogen reduction of oxide composites. Sharif MJ; Yamauchi M; Toh S; Matsumura S; Noro S; Kato K; Takata M; Tsukuda T Nanoscale; 2013 Feb; 5(4):1489-93. PubMed ID: 23334346 [TBL] [Abstract][Full Text] [Related]
18. Simulating the embolization of blood vessels using magnetic microparticles and acupuncture needle in a magnetic field. Rotariu O; Iacob G; Strachan NJ; Chiriac H Biotechnol Prog; 2004; 20(1):299-305. PubMed ID: 14763856 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution. Snovski R; Grinblat J; Margel S Langmuir; 2011 Sep; 27(17):11071-80. PubMed ID: 21806045 [TBL] [Abstract][Full Text] [Related]
20. Structure, microstructure, and magnetism in ferrimagnetic bioceramics. Leventouri T; Kis AC; Thompson JR; Anderson IM Biomaterials; 2005 Aug; 26(24):4924-31. PubMed ID: 15769526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]