BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 15585249)

  • 1. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration.
    Dikovsky D; Bianco-Peled H; Seliktar D
    Biomaterials; 2006 Mar; 27(8):1496-506. PubMed ID: 16243393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering.
    Gonen-Wadmany M; Oss-Ronen L; Seliktar D
    Biomaterials; 2007 Sep; 28(26):3876-86. PubMed ID: 17576008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration.
    DeLong SA; Moon JJ; West JL
    Biomaterials; 2005 Jun; 26(16):3227-34. PubMed ID: 15603817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructuring of PEG-fibrinogen polymeric scaffolds.
    Frisman I; Seliktar D; Bianco-Peled H
    Acta Biomater; 2010 Jul; 6(7):2518-24. PubMed ID: 19615475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth.
    Lee BH; Tin SP; Chaw SY; Cao Y; Xia Y; Steele TW; Seliktar D; Bianco-Peled H; Venkatraman SS
    J Biomater Sci Polym Ed; 2014; 25(4):394-409. PubMed ID: 24304216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular stimulation in tissue engineering.
    Seliktar D
    Ann N Y Acad Sci; 2005 Jun; 1047():386-94. PubMed ID: 16093513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation.
    Schmidt O; Mizrahi J; Elisseeff J; Seliktar D
    Biotechnol Bioeng; 2006 Dec; 95(6):1061-9. PubMed ID: 16921532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructuring biosynthetic hydrogels for tissue engineering: a cellular and structural analysis.
    Frisman I; Seliktar D; Bianco-Peled H
    Acta Biomater; 2012 Jan; 8(1):51-60. PubMed ID: 21855662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.
    Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D
    Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modifications of photocrosslinked biodegradable elastomers and their influence on smooth muscle cell adhesion and proliferation.
    Ilagan BG; Amsden BG
    Acta Biomater; 2009 Sep; 5(7):2429-40. PubMed ID: 19375999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior.
    Munoz-Pinto DJ; Bulick AS; Hahn MS
    J Biomed Mater Res A; 2009 Jul; 90(1):303-16. PubMed ID: 19402139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation.
    Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis.
    Frisman I; Seliktar D; Bianco-Peled H
    Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.
    Oss-Ronen L; Seliktar D
    Acta Biomater; 2011 Jan; 7(1):163-70. PubMed ID: 20643230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.