BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 15585251)

  • 1. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications.
    Pattison MA; Wurster S; Webster TJ; Haberstroh KM
    Biomaterials; 2005 May; 26(15):2491-500. PubMed ID: 15585251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the in vitro and in vivo efficacy of nano-structured polymers for bladder tissue replacement applications.
    Pattison M; Webster TJ; Leslie J; Kaefer M; Haberstroh KM
    Macromol Biosci; 2007 May; 7(5):690-700. PubMed ID: 17477448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors.
    Jeong SI; Kim SY; Cho SK; Chong MS; Kim KS; Kim H; Lee SB; Lee YM
    Biomaterials; 2007 Feb; 28(6):1115-22. PubMed ID: 17112581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.
    Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F
    Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
    Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST
    Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response.
    Koegler WS; Griffith LG
    Biomaterials; 2004 Jun; 25(14):2819-30. PubMed ID: 14962560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds.
    Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells.
    Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH
    Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold.
    Li J; Li L; Yu H; Cao H; Gao C; Gong Y
    ASAIO J; 2006; 52(3):321-7. PubMed ID: 16760723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-structured polymers enhance bladder smooth muscle cell function.
    Thapa A; Miller DC; Webster TJ; Haberstroh KM
    Biomaterials; 2003 Aug; 24(17):2915-26. PubMed ID: 12742731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.