BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 15585251)

  • 21. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds.
    Li M; Mondrinos MJ; Chen X; Gandhi MR; Ko FK; Lelkes PI
    J Biomed Mater Res A; 2006 Dec; 79(4):963-73. PubMed ID: 16948146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaffold fabrication by indirect three-dimensional printing.
    Lee M; Dunn JC; Wu BM
    Biomaterials; 2005 Jul; 26(20):4281-9. PubMed ID: 15683652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models.
    Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ
    J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds.
    Wu YC; Shaw SY; Lin HR; Lee TM; Yang CY
    Biomaterials; 2006 Feb; 27(6):896-904. PubMed ID: 16125224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features.
    Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 Jan; 25(1):53-61. PubMed ID: 14580908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning.
    Telemeco TA; Ayres C; Bowlin GL; Wnek GE; Boland ED; Cohen N; Baumgarten CM; Mathews J; Simpson DG
    Acta Biomater; 2005 Jul; 1(4):377-85. PubMed ID: 16701819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction of embryonic cortical neurons on nanofibrous scaffolds for neural tissue engineering.
    Nisbet DR; Pattanawong S; Ritchie NE; Shen W; Finkelstein DI; Horne MK; Forsythe JS
    J Neural Eng; 2007 Jun; 4(2):35-41. PubMed ID: 17409478
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films.
    Miller DC; Haberstroh KM; Webster TJ
    J Biomed Mater Res A; 2005 Jun; 73(4):476-84. PubMed ID: 15880725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable PLGA microcarriers for injectable delivery of chondrocytes: effect of surface modification on cell attachment and function.
    Chun KW; Yoo HS; Yoon JJ; Park TG
    Biotechnol Prog; 2004; 20(6):1797-801. PubMed ID: 15575714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering.
    Krebs MD; Sutter KA; Lin AS; Guldberg RE; Alsberg E
    Acta Biomater; 2009 Oct; 5(8):2847-59. PubMed ID: 19446056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.
    Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J
    Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces.
    Miller DC; Thapa A; Haberstroh KM; Webster TJ
    IEEE Trans Nanobioscience; 2002 Jun; 1(2):61-6. PubMed ID: 16689208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of composition, solvent, and salt particles on the physicochemical properties of polyglycolide/poly(lactide-co-glycolide) scaffolds.
    Kuo YC; Leou SN
    Biotechnol Prog; 2006; 22(6):1664-70. PubMed ID: 17137316
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold.
    Uematsu K; Hattori K; Ishimoto Y; Yamauchi J; Habata T; Takakura Y; Ohgushi H; Fukuchi T; Sato M
    Biomaterials; 2005 Jul; 26(20):4273-9. PubMed ID: 15683651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling the adhesion of human embryonic stem cells to poly(lactic-co-glycolic acid) surfaces in a 3D environment.
    Gao SY; Lees JG; Wong JC; Croll TI; George P; Cooper-White JJ; Tuch BE
    J Biomed Mater Res A; 2010 Feb; 92(2):683-92. PubMed ID: 19247993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. "Wet-state" mechanical properties of three-dimensional polyester porous scaffolds.
    Wu L; Zhang J; Jing D; Ding J
    J Biomed Mater Res A; 2006 Feb; 76(2):264-71. PubMed ID: 16265648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The degradation of the three layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane in vitro.
    Liao S; Watari F; Zhu Y; Uo M; Akasaka T; Wang W; Xu G; Cui F
    Dent Mater; 2007 Sep; 23(9):1120-8. PubMed ID: 17095082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.