BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 15585254)

  • 1. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells.
    Masters KS; Shah DN; Leinwand LA; Anseth KS
    Biomaterials; 2005 May; 26(15):2517-25. PubMed ID: 15585254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing scaffolds for valvular interstitial cells: cell adhesion and function on naturally derived materials.
    Masters KS; Shah DN; Walker G; Leinwand LA; Anseth KS
    J Biomed Mater Res A; 2004 Oct; 71(1):172-80. PubMed ID: 15368267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves.
    Ramamurthi A; Vesely I
    Biomaterials; 2005 Mar; 26(9):999-1010. PubMed ID: 15369688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of human valve interstitial cells with collagen matrices manufactured using rapid prototyping.
    Taylor PM; Sachlos E; Dreger SA; Chester AH; Czernuszka JT; Yacoub MH
    Biomaterials; 2006 May; 27(13):2733-7. PubMed ID: 16406000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells.
    Joddar B; Ramamurthi A
    Biomaterials; 2006 May; 27(15):2994-3004. PubMed ID: 16457881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of sodium ascorbate on the mechanical properties of hyaluronan-based vascular constructs.
    Arrigoni C; Camozzi D; Imberti B; Mantero S; Remuzzi A
    Biomaterials; 2006 Feb; 27(4):623-30. PubMed ID: 16048730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks.
    Kutty JK; Cho E; Soo Lee J; Vyavahare NR; Webb K
    Biomaterials; 2007 Nov; 28(33):4928-38. PubMed ID: 17720239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels.
    Suri S; Schmidt CE
    Acta Biomater; 2009 Sep; 5(7):2385-97. PubMed ID: 19446050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.
    Baier Leach J; Bivens KA; Patrick CW; Schmidt CE
    Biotechnol Bioeng; 2003 Jun; 82(5):578-89. PubMed ID: 12652481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications.
    Flanagan TC; Wilkins B; Black A; Jockenhoevel S; Smith TJ; Pandit AS
    Biomaterials; 2006 Apr; 27(10):2233-46. PubMed ID: 16313955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosslinking of decellularized porcine heart valve matrix by procyanidins.
    Zhai W; Chang J; Lin K; Wang J; Zhao Q; Sun X
    Biomaterials; 2006 Jul; 27(19):3684-90. PubMed ID: 16513164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A surface-tethered model to assess size-specific effects of hyaluronan (HA) on endothelial cells.
    Ibrahim S; Joddar B; Craps M; Ramamurthi A
    Biomaterials; 2007 Feb; 28(5):825-35. PubMed ID: 17045332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia induces near-native mechanical properties in engineered heart valve tissue.
    Balguid A; Mol A; van Vlimmeren MA; Baaijens FP; Bouten CV
    Circulation; 2009 Jan; 119(2):290-7. PubMed ID: 19118259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds.
    Tang S; Vickers SM; Hsu HP; Spector M
    J Biomed Mater Res A; 2007 Aug; 82(2):323-35. PubMed ID: 17295240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential for synthesis and degradation of extracellular matrix proteins by valve interstitial cells seeded onto collagen scaffolds.
    Dreger SA; Thomas P; Sachlos E; Chester AH; Czernuszka JT; Taylor PM; Yacoub MH
    Tissue Eng; 2006 Sep; 12(9):2533-40. PubMed ID: 16995786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel thiol-modified hyaluronan and elastin-like polypetide composite material for tissue engineering of the nucleus pulposus of the intervertebral disc.
    Moss IL; Gordon L; Woodhouse KA; Whyne CM; Yee AJ
    Spine (Phila Pa 1976); 2011 Jun; 36(13):1022-9. PubMed ID: 21150701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.
    Leach JB; Schmidt CE
    Biomaterials; 2005 Jan; 26(2):125-35. PubMed ID: 15207459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.