These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15585294)

  • 1. Neurosurgical access to cortical areas in the lateral fissure of primates.
    Hackett TA; Karmos G; Schroeder CE; Ulbert I; Sterbing-D'Angelo SJ; D'Angelo WR; Kajikawa Y; Blumell S; de la Mothe L
    J Neurosci Methods; 2005 Jan; 141(1):103-13. PubMed ID: 15585294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A bio-friendly and economical technique for chronic implantation of multiple microelectrode arrays.
    Chhatbar PY; von Kraus LM; Semework M; Francis JT
    J Neurosci Methods; 2010 May; 188(2):187-94. PubMed ID: 20153370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Through the choroidal fissure: a quantitative anatomic comparison of 2 incisions and trajectories (transsylvian transchoroidal and lateral transtemporal).
    Wu A; Chang SW; Deshmukh P; Spetzler RF; Preul MC
    Neurosurgery; 2010 Jun; 66(6 Suppl Operative):221-8; discussion 228-9. PubMed ID: 20489509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An implantable triple-function device for local drug delivery, cerebrospinal fluid removal and EEG recording in the cranial subdural/subarachnoid space of primates.
    Ludvig N; Medveczky G; Rizzolo R; Tang HM; Baptiste SL; Doyle WK; Devinsky O; Carlson C; French JA; Kral JG; Charchaflieh J; Kuzniecky RI
    J Neurosci Methods; 2012 Jan; 203(2):275-83. PubMed ID: 22027491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach.
    Gierthmuehlen M; Ball T; Henle C; Wang X; Rickert J; Raab M; Freiman T; Stieglitz T; Kaminsky J
    J Neurosci Methods; 2011 Oct; 202(1):77-86. PubMed ID: 21896285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frameless stereotaxy in the nonhuman primate.
    Frey S; Comeau R; Hynes B; Mackey S; Petrides M
    Neuroimage; 2004 Nov; 23(3):1226-34. PubMed ID: 15528122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk factors for complications during intracranial electrode recording in presurgical evaluation of drug resistant partial epilepsy.
    Wong CH; Birkett J; Byth K; Dexter M; Somerville E; Gill D; Chaseling R; Fearnside M; Bleasel A
    Acta Neurochir (Wien); 2009 Jan; 151(1):37-50. PubMed ID: 19129963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A removable silicone elastomer seal reduces granulation tissue growth and maintains the sterility of recording chambers for primate neurophysiology.
    Spitler KM; Gothard KM
    J Neurosci Methods; 2008 Mar; 169(1):23-6. PubMed ID: 18241928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Presurgical evaluation of intractable epilepsy using stereo-electro-encephalography methodology: principles, technique and morbidity].
    Cossu M; Chabardès S; Hoffmann D; Lo Russo G
    Neurochirurgie; 2008 May; 54(3):367-73. PubMed ID: 18440035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronavigation and resection of lesions located in eloquent brain areas under local anesthesia and neuropsychological-neurophysiological monitoring.
    Pinsker MO; Nabavi A; Mehdorn HM
    Minim Invasive Neurosurg; 2007 Oct; 50(5):281-4. PubMed ID: 18058644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision.
    Palmer SM; Rosa MG
    Eur J Neurosci; 2006 Oct; 24(8):2389-405. PubMed ID: 17042793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys.
    Fukushima M; Saunders RC; Mullarkey M; Doyle AM; Mishkin M; Fujii N
    J Neurosci Methods; 2014 Aug; 233():155-65. PubMed ID: 24972186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posterior parietal cortex areas MIP and LIPv receive eye position and velocity inputs via ascending preposito-thalamo-cortical pathways.
    Prevosto V; Graf W; Ugolini G
    Eur J Neurosci; 2009 Sep; 30(6):1151-61. PubMed ID: 19735295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrode implantation for deep brain stimulation in dystonia: a fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPI.
    Pinsker MO; Volkmann J; Falk D; Herzog J; Alfke K; Steigerwald F; Deuschl G; Mehdorn M
    Zentralbl Neurochir; 2008 May; 69(2):71-5. PubMed ID: 18444217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.