These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15585530)

  • 1. A score matrix to reveal the hidden links in glycans.
    Aoki KF; Mamitsuka H; Akutsu T; Kanehisa M
    Bioinformatics; 2005 Apr; 21(8):1457-63. PubMed ID: 15585530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient tree-matching methods for accurate carbohydrate database queries.
    Aoki KF; Yamaguchi A; Okuno Y; Akutsu T; Ueda N; Kanehisa M; Mamitsuka H
    Genome Inform; 2003; 14():134-43. PubMed ID: 15706528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains.
    Aoki KF; Yamaguchi A; Ueda N; Akutsu T; Mamitsuka H; Goto S; Kanehisa M
    Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W267-72. PubMed ID: 15215393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mining significant tree patterns in carbohydrate sugar chains.
    Hashimoto K; Takigawa I; Shiga M; Kanehisa M; Mamitsuka H
    Bioinformatics; 2008 Aug; 24(16):i167-73. PubMed ID: 18689820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of a new probabilistic model for recognizing complex patterns in glycans.
    Aoki KF; Ueda N; Yamaguchi A; Kanehisa M; Akutsu T; Mamitsuka H
    Bioinformatics; 2004 Aug; 20 Suppl 1():i6-14. PubMed ID: 15262775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains.
    Aoki-Kinoshita KF; Ueda N; Mamitsuka H; Kanehisa M
    Bioinformatics; 2006 Jul; 22(14):e25-34. PubMed ID: 16873479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences.
    Katoh K; Toh H
    Bioinformatics; 2007 Feb; 23(3):372-4. PubMed ID: 17118958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The iRMSD: a local measure of sequence alignment accuracy using structural information.
    Armougom F; Moretti S; Keduas V; Notredame C
    Bioinformatics; 2006 Jul; 22(14):e35-9. PubMed ID: 16873492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A global representation of the carbohydrate structures: a tool for the analysis of glycan.
    Hashimoto K; Kawano S; Goto S; Aoki-Kinoshita KF; Kawashima M; Kanehisa M
    Genome Inform; 2005; 16(1):214-22. PubMed ID: 16362924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Machine Learning Based Approach to de novo Sequencing of Glycans from Tandem Mass Spectrometry Spectrum.
    Kumozaki S; Sato K; Sakakibara Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1267-74. PubMed ID: 26671799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KEGG as a glycome informatics resource.
    Hashimoto K; Goto S; Kawano S; Aoki-Kinoshita KF; Ueda N; Hamajima M; Kawasaki T; Kanehisa M
    Glycobiology; 2006 May; 16(5):63R-70R. PubMed ID: 16014746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins.
    Royle L; Mattu TS; Hart E; Langridge JI; Merry AH; Murphy N; Harvey DJ; Dwek RA; Rudd PM
    Anal Biochem; 2002 May; 304(1):70-90. PubMed ID: 11969191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement in accuracy of multiple sequence alignment using novel group-to-group sequence alignment algorithm with piecewise linear gap cost.
    Yamada S; Gotoh O; Yamana H
    BMC Bioinformatics; 2006 Dec; 7():524. PubMed ID: 17137519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MUSA: a parameter free algorithm for the identification of biologically significant motifs.
    Mendes ND; Casimiro AC; Santos PM; Sá-Correia I; Oliveira AL; Freitas AT
    Bioinformatics; 2006 Dec; 22(24):2996-3002. PubMed ID: 17068086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple sequence alignments.
    Wallace IM; Blackshields G; Higgins DG
    Curr Opin Struct Biol; 2005 Jun; 15(3):261-6. PubMed ID: 15963889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships.
    Sato T; Yamanishi Y; Kanehisa M; Toh H
    Bioinformatics; 2005 Sep; 21(17):3482-9. PubMed ID: 15994190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCARNA: fast and accurate structural alignment of RNA sequences by matching fixed-length stem fragments.
    Tabei Y; Tsuda K; Kin T; Asai K
    Bioinformatics; 2006 Jul; 22(14):1723-9. PubMed ID: 16690634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Murlet: a practical multiple alignment tool for structural RNA sequences.
    Kiryu H; Tabei Y; Kin T; Asai K
    Bioinformatics; 2007 Jul; 23(13):1588-98. PubMed ID: 17459961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycan classification with tree kernels.
    Yamanishi Y; Bach F; Vert JP
    Bioinformatics; 2007 May; 23(10):1211-6. PubMed ID: 17344232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces.
    Aytuna AS; Gursoy A; Keskin O
    Bioinformatics; 2005 Jun; 21(12):2850-5. PubMed ID: 15855251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.