These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15585767)

  • 41. [Efficacy and safety of two vitamin supplement regimens on homocysteine levels in hemodialysis patients. Prospective, randomized clinical trial].
    Sánchez Alvarez JE; Pérez Tamajón L; Hernández D; Alvarez González A; Delgado P; Lorenzo V
    Nefrologia; 2005; 25(3):288-96. PubMed ID: 16053010
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alcohol intake and methylenetetrahydrofolate reductase polymorphism modify the relation of folate intake to plasma homocysteine.
    Chiuve SE; Giovannucci EL; Hankinson SE; Hunter DJ; Stampfer MJ; Willett WC; Rimm EB
    Am J Clin Nutr; 2005 Jul; 82(1):155-62. PubMed ID: 16002814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene-environment and gene-gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men.
    Dekou V; Gudnason V; Hawe E; Miller GJ; Stansbie D; Humphries SE
    Thromb Haemost; 2001 Jan; 85(1):67-74. PubMed ID: 11204591
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Meta-analysis of plasma homocysteine, serum folate, serum vitamin B(12), and thermolabile MTHFR genotype as risk factors for retinal vascular occlusive disease.
    Cahill MT; Stinnett SS; Fekrat S
    Am J Ophthalmol; 2003 Dec; 136(6):1136-50. PubMed ID: 14644226
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Relationship between folate, vitamin B12, total plasma homocysteine and mutation of reductase].
    Hao L; Liu M; Liu X; Chen X; Tang Y; Li Z
    Zhonghua Yu Fang Yi Xue Za Zhi; 2000 Jan; 34(1):22-4. PubMed ID: 11860891
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hyperhomocysteinemia is related to residual glomerular filtration and folate, but not to methylenetetrahydrofolate-reductase and methionine synthase polymorphisms, in supplemented end-stage renal disease patients undergoing hemodialysis.
    Anwar W; Guéant JL; Abdelmouttaleb I; Adjalla C; Gérard P; Lemoel G; Erraess N; Moutabarrek A; Namour F
    Clin Chem Lab Med; 2001 Aug; 39(8):747-52. PubMed ID: 11592445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Total homocysteine and its predictors in Dutch children.
    van Beynum IM; den Heijer M; Thomas CM; Afman L; Oppenraay-van Emmerzaal D; Blom HJ
    Am J Clin Nutr; 2005 May; 81(5):1110-6. PubMed ID: 15883436
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plasma homocysteine after insulin infusion in type II diabetic patients with and without methionine intolerance.
    Ventura P; Panini R; Emiliani S; Salvioli G
    Exp Clin Endocrinol Diabetes; 2004 Jan; 112(1):44-51. PubMed ID: 14758571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Supplementation with vitamin B12 decreases homocysteine and methylmalonic acid but also serum folate in patients with end-stage renal disease.
    Dierkes J; Domröse U; Ambrosch A; Schneede J; Guttormsen AB; Neumann KH; Luley C
    Metabolism; 1999 May; 48(5):631-5. PubMed ID: 10337865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasma homocysteine concentrations in Greek children are influenced by an interaction between the methylenetetrahydrofolate reductase C677T genotype and folate status.
    Papoutsakis C; Yiannakouris N; Manios Y; Papaconstantinou E; Magkos F; Schulpis KH; Zampelas A; Matalas AL
    J Nutr; 2005 Mar; 135(3):383-8. PubMed ID: 15735067
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic defects as important factors for moderate hyperhomocysteinemia.
    Geisel J; Zimbelmann I; Schorr H; Knapp JP; Bodis M; Hübner U; Herrmann W
    Clin Chem Lab Med; 2001 Aug; 39(8):698-704. PubMed ID: 11592436
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of methionine synthase (A2756G) and methionine synthase reductase (A66G) polymorphisms on plasma homocysteine levels and relation to risk of coronary artery disease.
    Laraqui A; Allami A; Carrié A; Coiffard AS; Benkouka F; Benjouad A; Bendriss A; Kadiri N; Bennouar N; Benomar A; Guedira A; Raisonnier A; Fellati S; Srairi JE; Benomar M
    Acta Cardiol; 2006 Feb; 61(1):51-61. PubMed ID: 16485733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of combined methionine synthase (MTR 2756A > G) and methylenetetrahydrofolate reductase (MTHFR 677C > T) polymorphisms to plasma homocysteine levels in Korean patients with ischemic stroke.
    Kim OJ; Hong SP; Ahn JY; Hong SH; Hwang TS; Kim SO; Yoo W; Oh D; Kim NK
    Yonsei Med J; 2007 Apr; 48(2):201-9. PubMed ID: 17461517
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects.
    Christensen B; Arbour L; Tran P; Leclerc D; Sabbaghian N; Platt R; Gilfix BM; Rosenblatt DS; Gravel RA; Forbes P; Rozen R
    Am J Med Genet; 1999 May; 84(2):151-7. PubMed ID: 10323741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Association of MTRRA66G polymorphism (but not of MTHFR C677T and A1298C, MTRA2756G, TCN C776G) with homocysteine and coronary artery disease in the French population.
    Guéant-Rodriguez RM; Juilliére Y; Candito M; Adjalla CE; Gibelin P; Herbeth B; Van Obberghen E; Gueánt JL
    Thromb Haemost; 2005 Sep; 94(3):510-5. PubMed ID: 16268464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Associations between MTHFR 1793G>A and plasma total homocysteine, folate, and vitamin B in kidney transplant recipients.
    Winkelmayer WC; Huber A; Wagner OF; Hörl WH; Sunder-Plassmann G; Födinger M
    Kidney Int; 2005 May; 67(5):1980-5. PubMed ID: 15840047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The relationship between riboflavin and plasma total homocysteine in the Framingham Offspring cohort is influenced by folate status and the C677T transition in the methylenetetrahydrofolate reductase gene.
    Jacques PF; Kalmbach R; Bagley PJ; Russo GT; Rogers G; Wilson PW; Rosenberg IH; Selhub J
    J Nutr; 2002 Feb; 132(2):283-8. PubMed ID: 11823591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetic polymorphisms and folate status.
    Hiraoka M; Kagawa Y
    Congenit Anom (Kyoto); 2017 Sep; 57(5):142-149. PubMed ID: 28598562
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations.
    Guéant-Rodriguez RM; Guéant JL; Debard R; Thirion S; Hong LX; Bronowicki JP; Namour F; Chabi NW; Sanni A; Anello G; Bosco P; Romano C; Amouzou E; Arrieta HR; Sánchez BE; Romano A; Herbeth B; Guilland JC; Mutchinick OM
    Am J Clin Nutr; 2006 Mar; 83(3):701-7. PubMed ID: 16522920
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Folate, homocysteine levels, methylenetetrahydrofolate reductase (MTHFR) 677C --> T variant, and the risk of myocardial infarction in young women: effect of female hormones on homocysteine levels.
    Tanis BC; Blom HJ; Bloemenkamp DG; van den Bosch MA; Algra A; van der Graaf Y; Rosendaal FR
    J Thromb Haemost; 2004 Jan; 2(1):35-41. PubMed ID: 14717963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.