These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15585902)

  • 21. Kinematic analysis of manual tracking in monkeys: characterization of movement intermittencies during a circular tracking task.
    Roitman AV; Massaquoi SG; Takahashi K; Ebner TJ
    J Neurophysiol; 2004 Feb; 91(2):901-11. PubMed ID: 14561685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origins of submovements during pointing movements.
    Fradet L; Lee G; Dounskaia N
    Acta Psychol (Amst); 2008 Sep; 129(1):91-100. PubMed ID: 18550020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Age-related trends in spatio-temporal structure of simple graphic movements performed in a cyclic manner at a maximal tempo. Part I. Tempo increase is accounted for by a reduction in the number of submovements in a movement cycle].
    Kurganskiĭ AV; Kurganskaia ME
    Fiziol Cheloveka; 2011; 37(1):26-35. PubMed ID: 21469352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Moving slowly is hard for humans: limitations of dynamic primitives.
    Park SW; Marino H; Charles SK; Sternad D; Hogan N
    J Neurophysiol; 2017 Jul; 118(1):69-83. PubMed ID: 28356477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic properties of rapid hand movements in a knob turning task.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2000 Jun; 132(4):419-33. PubMed ID: 10912823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fitts' Law With An Average of Two or Less Submoves?
    Hoffmann ER
    J Mot Behav; 2016; 48(4):318-31. PubMed ID: 26731344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Features of motor performance that drive adaptation in rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2003 Feb; 148(3):388-400. PubMed ID: 12541149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerating Submovement Decomposition With Search-Space Reduction Heuristics.
    Gowda S; Overduin SA; Chen M; Chang YH; Tomlin CJ; Carmena JM
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2508-15. PubMed ID: 26011861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterizing and predicting submovements during human three-dimensional arm reaches.
    Liao JY; Kirsch RF
    PLoS One; 2014; 9(7):e103387. PubMed ID: 25057968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Avoiding spurious submovement decompositions: a globally optimal algorithm.
    Rohrer B; Hogan N
    Biol Cybern; 2003 Sep; 89(3):190-9. PubMed ID: 14504938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciding when and how to correct a movement: discrete submovements as a decision making process.
    Fishbach A; Roy SA; Bastianen C; Miller LE; Houk JC
    Exp Brain Res; 2007 Feb; 177(1):45-63. PubMed ID: 16944111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control Strategy in Movements with Transmission Delay.
    Hoffmann ER; Karri S
    J Mot Behav; 2018; 50(4):398-408. PubMed ID: 28910588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Practice and Component Submovements: The Roles of Programming and Feedback in Rapid Aimed Limb Movements.
    Pratt J; Abrams RA
    J Mot Behav; 1996 Jun; 28(2):149-156. PubMed ID: 12529216
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Action Monitoring Cortical Activity Coupled to Submovements.
    Pereira M; Sobolewski A; Millán JDR
    eNeuro; 2017; 4(5):. PubMed ID: 29071301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Avoiding spurious submovement decompositions II: a scattershot algorithm.
    Rohrer B; Hogan N
    Biol Cybern; 2006 May; 94(5):409-14. PubMed ID: 16570179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the initiation of minimum-jerk submovements in three-dimensional target-oriented human arm trajectories.
    Liao JY; Kirsch RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6797-800. PubMed ID: 23367490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The violation of Fitts' Law: an examination of displacement biases and corrective submovements.
    Roberts JW; Blinch J; Elliott D; Chua R; Lyons JL; Welsh TN
    Exp Brain Res; 2016 Aug; 234(8):2151-63. PubMed ID: 26979439
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A rapid detection of motor block in patients with Parkinson disease during volitional movements of the hand].
    Popović MB; Kostić V; Dzoljić E; Ercegovac M
    Srp Arh Celok Lek; 2002; 130(11-12):376-81. PubMed ID: 12751160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor control and learning in individuals with early-treated phenylketonuria.
    Christ SE; Abbene EE; Clocksin HE; Wegrzyn AK
    Neuropsychology; 2021 Oct; 35(7):731-741. PubMed ID: 34323564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.