BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 15586354)

  • 1. Lactate transport and transporters: general principles and functional roles in brain cells.
    Hertz L; Dienel GA
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):11-8. PubMed ID: 15586354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Lactate in the brain--without turning sour].
    Bergersen LH
    Tidsskr Nor Laegeforen; 2006 Aug; 126(16):2094-7. PubMed ID: 16932776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle.
    Bergersen LH
    Neuroscience; 2007 Mar; 145(1):11-9. PubMed ID: 17218064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of monocarboxylate transporter 2 and 4 in the transport of gamma-hydroxybutyric acid in mammalian cells.
    Wang Q; Morris ME
    Drug Metab Dispos; 2007 Aug; 35(8):1393-9. PubMed ID: 17502341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain.
    Pellerin L; Bergersen LH; Halestrap AP; Pierre K
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):55-64. PubMed ID: 15573400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional characteristics of H+ -dependent nicotinate transport in primary cultures of astrocytes from rat cerebral cortex.
    Shimada A; Nakagawa Y; Morishige H; Yamamoto A; Fujita T
    Neurosci Lett; 2006 Jan; 392(3):207-12. PubMed ID: 16213084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19.
    Majumdar S; Gunda S; Pal D; Mitra AK
    Mol Pharm; 2005; 2(2):109-17. PubMed ID: 15804185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized lactate transporter activity and expression in the syncytiotrophoblast of the term human placenta.
    Settle P; Mynett K; Speake P; Champion E; Doughty IM; Sibley CP; D'Souza SW; Glazier J
    Placenta; 2004 Jul; 25(6):496-504. PubMed ID: 15135232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1.
    Müller F; Huber K; Pfannkuche H; Aschenbach JR; Breves G; Gäbel G
    Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1139-46. PubMed ID: 12381528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of monocarboxylate transport in human kidney HK-2 cells.
    Wang Q; Lu Y; Yuan M; Darling IM; Repasky EA; Morris ME
    Mol Pharm; 2006; 3(6):675-85. PubMed ID: 17140255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Placental lactate transporter activity and expression in intrauterine growth restriction.
    Settle P; Sibley CP; Doughty IM; Johnston T; Glazier JD; Powell TL; Jansson T; D'Souza SW
    J Soc Gynecol Investig; 2006 Jul; 13(5):357-63. PubMed ID: 16814165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocarboxylate transporters in the central nervous system: distribution, regulation and function.
    Pierre K; Pellerin L
    J Neurochem; 2005 Jul; 94(1):1-14. PubMed ID: 15953344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity.
    Tekkök SB; Brown AM; Westenbroek R; Pellerin L; Ransom BR
    J Neurosci Res; 2005 Sep; 81(5):644-52. PubMed ID: 16015619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of CD147 and monocarboxylate transporters MCT1, MCT2 and MCT4 in porcine small intestine and colon.
    Sepponen K; Ruusunen M; Pakkanen JA; Pösö AR
    Vet J; 2007 Jul; 174(1):122-8. PubMed ID: 16901736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of monocarboxylate transporters in uptake of lactic acid in HeLa cells.
    Cheeti S; Warrier BK; Lee CH
    Int J Pharm; 2006 Nov; 325(1-2):48-54. PubMed ID: 16887304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures.
    Debernardi R; Pierre K; Lengacher S; Magistretti PJ; Pellerin L
    J Neurosci Res; 2003 Jul; 73(2):141-55. PubMed ID: 12836157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocarboxylate-uptake kinetics in perfused rat heart.
    Dennis SC; Kohn MC; Slegowski MB; Anderson GJ; Garfinkel D
    Adv Myocardiol; 1985; 6():259-72. PubMed ID: 3922026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation.
    Aubert A; Costalat R; Magistretti PJ; Pellerin L
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16448-53. PubMed ID: 16260743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship among transport, intracellular binding, and inhibition of RNA synthesis by actinomycin D in Ehrlich ascites tumor cells in vitro.
    Bowen D; Goldman ID
    Cancer Res; 1975 Nov; 35(11 Pt 1):3054-60. PubMed ID: 1182700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.