These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 15586392)
1. Inclusion complex formation between alpha-cyclodextrin and biodegradable aliphatic polyesters. Shin KM; Dong T; He Y; Taguchi Y; Oishi A; Nishida H; Inoue Y Macromol Biosci; 2004 Dec; 4(12):1075-83. PubMed ID: 15586392 [TBL] [Abstract][Full Text] [Related]
2. Formation and characterization of inclusion complexes of poly(butylene succinate) with alpha- and gamma-cyclodextrins. Dong T; He Y; Shin KM; Inoue Y Macromol Biosci; 2004 Dec; 4(12):1084-91. PubMed ID: 15586385 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic degradation of supramolecular materials based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone). Luo H; Meng X; Cheng C; Dong Z; Zhang S; Li B J Phys Chem B; 2010 Apr; 114(13):4739-45. PubMed ID: 20235496 [TBL] [Abstract][Full Text] [Related]
4. Novel biodegradable shape memory material based on partial inclusion complex formation between alpha-cyclodextrin and poly(epsilon-caprolactone). Luo H; Liu Y; Yu Z; Zhang S; Li B Biomacromolecules; 2008 Oct; 9(10):2573-7. PubMed ID: 18798668 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular Polypseudorotaxanes composed of star-shaped porphyrin-cored poly(epsilon-caprolactone) and alpha-cyclodextrin. Dai XH; Dong CM; Fa HB; Yan D; Wei Y Biomacromolecules; 2006 Dec; 7(12):3527-33. PubMed ID: 17154484 [TBL] [Abstract][Full Text] [Related]
6. A facile one-pot construction of supramolecular polymer micelles from alpha-cyclodextrin and poly(epsilon-caprolactone). Dong H; Li Y; Cai S; Zhuo R; Zhang X; Liu L Angew Chem Int Ed Engl; 2008; 47(30):5573-6. PubMed ID: 18567037 [No Abstract] [Full Text] [Related]
7. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin. Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterization and thermal properties of chitin-g-poly(epsilon-caprolactone) copolymers by using chitin gel. Jayakumar R; Tamura H Int J Biol Macromol; 2008 Jul; 43(1):32-6. PubMed ID: 17950453 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and alpha-cyclodextrin. Li J; Ni X; Zhou Z; Leong KW J Am Chem Soc; 2003 Feb; 125(7):1788-95. PubMed ID: 12580604 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of bio-compatibility via specific interactions in polyesters modified with a bio-resourceful macromolecular ester containing polyphenol groups. Yen KC; Mandal TK; Woo EM J Biomed Mater Res A; 2008 Sep; 86(3):701-12. PubMed ID: 18041717 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility. Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and Characterization of Poly(ε-caprolactone)/α-Cyclodextrin Pseudorotaxane Nanofibers. Narayanan G; Aguda R; Hartman M; Chung CC; Boy R; Gupta BS; Tonelli AE Biomacromolecules; 2016 Jan; 17(1):271-9. PubMed ID: 26629913 [TBL] [Abstract][Full Text] [Related]
14. Composition dependence of the crystallization behavior and morphology of the poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer. He C; Sun J; Ma J; Chen X; Jing X Biomacromolecules; 2006 Dec; 7(12):3482-9. PubMed ID: 17154478 [TBL] [Abstract][Full Text] [Related]
15. Formation of a unique crystal morphology for the poly(ethylene glycol)-poly(epsilon-caprolactone) diblock copolymer. He C; Sun J; Zhao T; Hong Z; Zhuang X; Chen X; Jing X Biomacromolecules; 2006 Jan; 7(1):252-8. PubMed ID: 16398522 [TBL] [Abstract][Full Text] [Related]
16. Guest-free self-assembly of alpha-cyclodextrins leading to channel-type nanofibrils as mesoporous framework. Chung JW; Kang TJ; Kwak SY Langmuir; 2007 Nov; 23(24):12366-70. PubMed ID: 17956138 [TBL] [Abstract][Full Text] [Related]
17. Melting and crystallization behaviors of biodegradable polymers enzymatically coalesced from their cyclodextrin inclusion complexes. Wei M; Shuai X; Tonelli AE Biomacromolecules; 2003; 4(3):783-92. PubMed ID: 12741799 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204 [TBL] [Abstract][Full Text] [Related]
19. Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Ciardelli G; Chiono V; Vozzi G; Pracella M; Ahluwalia A; Barbani N; Cristallini C; Giusti P Biomacromolecules; 2005; 6(4):1961-76. PubMed ID: 16004434 [TBL] [Abstract][Full Text] [Related]
20. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate). Chen Z; Cheng S; Xu K Biomaterials; 2009 Apr; 30(12):2219-30. PubMed ID: 19167751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]