These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 15586670)
1. Effect of nighttime temperature on tomato plant defensive chemistry. Bradfield M; Stamp N J Chem Ecol; 2004 Sep; 30(9):1713-21. PubMed ID: 15586670 [TBL] [Abstract][Full Text] [Related]
2. Impact of temporary nitrogen deprivation on tomato leaf phenolics. Bénard C; Bourgaud F; Gautier H Int J Mol Sci; 2011; 12(11):7971-81. PubMed ID: 22174644 [TBL] [Abstract][Full Text] [Related]
3. Polyphenol distribution in plant organs of tomato introgression lines. Minutolo M; Amalfitano C; Evidente A; Frusciante L; Errico A Nat Prod Res; 2013; 27(9):787-95. PubMed ID: 22788700 [TBL] [Abstract][Full Text] [Related]
4. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Clé C; Hill LM; Niggeweg R; Martin CR; Guisez Y; Prinsen E; Jansen MA Phytochemistry; 2008 Aug; 69(11):2149-56. PubMed ID: 18513762 [TBL] [Abstract][Full Text] [Related]
5. Spodoptera litura-mediated chemical defense is differentially modulated in older and younger systemic leaves of Solanum lycopersicum. Kundu A; Mishra S; Vadassery J Planta; 2018 Oct; 248(4):981-997. PubMed ID: 29987372 [TBL] [Abstract][Full Text] [Related]
6. Chemical constitution and effect of extracts of tomato plants byproducts on the enteric viral surrogates. Silva-Beltrán NP; Ruiz-Cruz S; Chaidez C; Ornelas-Paz Jde J; López-Mata MA; Márquez-Ríos E; Estrada MI Int J Environ Health Res; 2015; 25(3):299-311. PubMed ID: 25059828 [TBL] [Abstract][Full Text] [Related]
7. Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation. Larbat R; Le Bot J; Bourgaud F; Robin C; Adamowicz S Plant Biol (Stuttg); 2012 Sep; 14(5):760-9. PubMed ID: 22372822 [TBL] [Abstract][Full Text] [Related]
8. Effects of light quality, photoperiod, CO Naoya Fukuda ME; Yoshida H; Kusano M Plant Physiol Biochem; 2022 Sep; 186():290-298. PubMed ID: 35932653 [TBL] [Abstract][Full Text] [Related]
9. Engineering plants with increased levels of the antioxidant chlorogenic acid. Niggeweg R; Michael AJ; Martin C Nat Biotechnol; 2004 Jun; 22(6):746-54. PubMed ID: 15107863 [TBL] [Abstract][Full Text] [Related]
10. Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Flores IR; Vásquez-Murrieta MS; Franco-Hernández MO; Márquez-Herrera CE; Ponce-Mendoza A; Del Socorro López-Cortéz M Food Chem; 2021 May; 344():128608. PubMed ID: 33229147 [TBL] [Abstract][Full Text] [Related]
11. Interactive effects of elevated CO Zhou R; Yu X; Wen J; Jensen NB; Dos Santos TM; Wu Z; Rosenqvist E; Ottosen CO BMC Plant Biol; 2020 Jun; 20(1):260. PubMed ID: 32505202 [TBL] [Abstract][Full Text] [Related]
12. Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening. Slimestad R; Verheul MJ J Agric Food Chem; 2005 Sep; 53(18):7251-6. PubMed ID: 16131138 [TBL] [Abstract][Full Text] [Related]
13. [Effects of soil water content on H2O and CO2 exchange in tomato leaves in different seasons]. Gao FS; Xu K; Wang L; Su H; Xu LG Ying Yong Sheng Tai Xue Bao; 2007 Feb; 18(2):371-5. PubMed ID: 17450742 [TBL] [Abstract][Full Text] [Related]
14. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Gautier H; Diakou-Verdin V; Bénard C; Reich M; Buret M; Bourgaud F; Poëssel JL; Caris-Veyrat C; Génard M J Agric Food Chem; 2008 Feb; 56(4):1241-50. PubMed ID: 18237131 [TBL] [Abstract][Full Text] [Related]
15. Limitation of mineral supply as tool for the induction of secondary metabolites accumulation in tomato leaves. Groher T; Schmittgen S; Noga G; Hunsche M Plant Physiol Biochem; 2018 Sep; 130():105-111. PubMed ID: 29980095 [TBL] [Abstract][Full Text] [Related]
16. Boosting leaf contents of rutin and solanesol in bio-waste of Solanum lycopersicum. Röhlen-Schmittgen S; Ellenberger J; Groher T; Hunsche M Plant Physiol Biochem; 2020 Oct; 155():888-897. PubMed ID: 32905983 [TBL] [Abstract][Full Text] [Related]
17. Enhanced transpiration rate in the high pigment 1 tomato mutant and its physiological significance. Carvalho RF; Aidar ST; Azevedo RA; Dodd IC; Peres LE Plant Biol (Stuttg); 2011 May; 13(3):546-50. PubMed ID: 21489107 [TBL] [Abstract][Full Text] [Related]
18. Induced Plant Defenses Against Herbivory in Cultivated and Wild Tomato. Paudel S; Lin PA; Foolad MR; Ali JG; Rajotte EG; Felton GW J Chem Ecol; 2019 Aug; 45(8):693-707. PubMed ID: 31367970 [TBL] [Abstract][Full Text] [Related]
19. Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Negrel J; Javelle F; Morandi D; Lucchi G Plant Physiol Biochem; 2016 Dec; 109():308-318. PubMed ID: 27783981 [TBL] [Abstract][Full Text] [Related]
20. Elevated carbon dioxide plus chronic warming causes dramatic increases in leaf angle in tomato, which correlates with reduced plant growth. Jayawardena DM; Heckathorn SA; Bista DR; Boldt JK Plant Cell Environ; 2019 Apr; 42(4):1247-1256. PubMed ID: 30472733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]