These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 15587076)
1. Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Barrière Y; Ralph J; Méchin V; Guillaumie S; Grabber JH; Argillier O; Chabbert B; Lapierre C C R Biol; 2004; 327(9-10):847-60. PubMed ID: 15587076 [TBL] [Abstract][Full Text] [Related]
2. Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition. Vermerris W; Sherman DM; McIntyre LM J Exp Bot; 2010 May; 61(9):2479-90. PubMed ID: 20410320 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of phenylpropanoid and related genes in brown-midrib bm1, bm2, bm3, and bm4 young near-isogenic maize plants. Guillaumie S; Pichon M; Martinant JP; Bosio M; Goffner D; Barrière Y Planta; 2007 Jun; 226(1):235-50. PubMed ID: 17226026 [TBL] [Abstract][Full Text] [Related]
4. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. Guillaumie S; Goffner D; Barbier O; Martinant JP; Pichon M; Barrière Y BMC Plant Biol; 2008 Jun; 8():71. PubMed ID: 18582385 [TBL] [Abstract][Full Text] [Related]
5. Variations in the cell wall composition of maize brown midrib mutants. Marita JM; Vermerris W; Ralph J; Hatfield RD J Agric Food Chem; 2003 Feb; 51(5):1313-21. PubMed ID: 12590475 [TBL] [Abstract][Full Text] [Related]
6. Impact of the brown-midrib bm5 mutation on maize lignins. Méchin V; Laluc A; Legée F; Cézard L; Denoue D; Barrière Y; Lapierre C J Agric Food Chem; 2014 Jun; 62(22):5102-7. PubMed ID: 24823698 [TBL] [Abstract][Full Text] [Related]
7. Changes in Cell Wall Polymers and Degradability in Maize Mutants Lacking 3'- and 5'-O-Methyltransferases Involved in Lignin Biosynthesis. Fornalé S; Rencoret J; García-Calvo L; Encina A; Rigau J; Gutiérrez A; Del Río JC; Caparros-Ruiz D Plant Cell Physiol; 2017 Feb; 58(2):240-255. PubMed ID: 28013276 [TBL] [Abstract][Full Text] [Related]
8. Formation of syringyl-rich lignins in maize as influenced by feruloylated xylans and p-coumaroylated monolignols. Grabber JH; Lu F Planta; 2007 Aug; 226(3):741-51. PubMed ID: 17457604 [TBL] [Abstract][Full Text] [Related]
9. In search of a maize ideotype for cell wall enzymatic degradability using histological and biochemical lignin characterization. Méchin V; Argillier O; Rocher F; Hébert Y; Mila I; Pollet B; Barriére Y; Lapierre C J Agric Food Chem; 2005 Jul; 53(15):5872-81. PubMed ID: 16028968 [TBL] [Abstract][Full Text] [Related]
10. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation. Tang HM; Liu S; Hill-Skinner S; Wu W; Reed D; Yeh CT; Nettleton D; Schnable PS Plant J; 2014 Feb; 77(3):380-92. PubMed ID: 24286468 [TBL] [Abstract][Full Text] [Related]
11. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Anterola AM; Lewis NG Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514 [TBL] [Abstract][Full Text] [Related]
12. Cell wall modifications triggered by the down-regulation of Coumarate 3-hydroxylase-1 in maize. Fornalé S; Rencoret J; Garcia-Calvo L; Capellades M; Encina A; Santiago R; Rigau J; Gutiérrez A; Del Río JC; Caparros-Ruiz D Plant Sci; 2015 Jul; 236():272-82. PubMed ID: 26025540 [TBL] [Abstract][Full Text] [Related]
13. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Grabber JH; Hatfield RD; Lu F; Ralph J Biomacromolecules; 2008 Sep; 9(9):2510-6. PubMed ID: 18712922 [TBL] [Abstract][Full Text] [Related]
14. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. Kolkman JM; Moreta DE; Repka A; Bradbury P; Nelson RJ Plant Genome; 2023 Mar; 16(1):e20278. PubMed ID: 36533711 [TBL] [Abstract][Full Text] [Related]
16. Comparison of maize brown-midrib isogenic lines by cellular UV-microspectrophotometry and comparative transcript profiling. Shi C; Koch G; Ouzunova M; Wenzel G; Zein I; Lübberstedt T Plant Mol Biol; 2006 Nov; 62(4-5):697-714. PubMed ID: 17016741 [TBL] [Abstract][Full Text] [Related]
17. Modifying crops to increase cell wall digestibility. Jung HJ; Samac DA; Sarath G Plant Sci; 2012 Apr; 185-186():65-77. PubMed ID: 22325867 [TBL] [Abstract][Full Text] [Related]
18. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population. Shi C; Uzarowska A; Ouzunova M; Landbeck M; Wenzel G; Lübberstedt T BMC Genomics; 2007 Jan; 8():22. PubMed ID: 17233901 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. Trabucco GM; Matos DA; Lee SJ; Saathoff AJ; Priest HD; Mockler TC; Sarath G; Hazen SP BMC Biotechnol; 2013 Jul; 13():61. PubMed ID: 23902793 [TBL] [Abstract][Full Text] [Related]
20. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses. Grabber JH; Ralph J; Hatfield RD J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]