These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 15587466)

  • 1. Computer-based test-bed for clinical assessment of hand/wrist feed-forward neuroprosthetic controllers using artificial neural networks.
    Luján JL; Crago PE
    Med Biol Eng Comput; 2004 Nov; 42(6):754-61. PubMed ID: 15587466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulated feedforward neural network coordination of hand grasp and wrist angle in a neuroprosthesis.
    Adamczyk MM; Crago PE
    IEEE Trans Rehabil Eng; 2000 Sep; 8(3):297-304. PubMed ID: 11001509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of the input-output properties of neuroprosthetic hand grasps.
    Memberg WD; Crago PE
    J Rehabil Res Dev; 2000; 37(1):11-21. PubMed ID: 10847568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
    Hincapie JG; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):80-90. PubMed ID: 19211327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of input-output properties and control of neuroprosthetic hand grasp.
    Hines AE; Owens NE; Crago PE
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):610-23. PubMed ID: 1601442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of two methods of control of bilateral stimulated hand grasps in persons with tetraplegia.
    Scott TR; Heasman JM; Vare VA; Flynn RY; Gschwind CR; Middleton JW; Rutkowski SB
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):259-67. PubMed ID: 10896198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on feedback error learning controller for functional electrical stimulation: generation of target trajectories by minimum jerk model.
    Watanabe T; Fukushima K
    Artif Organs; 2011 Mar; 35(3):270-4. PubMed ID: 21401673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive neural network control of cyclic movements using functional neuromuscular stimulation.
    Riess J; Abbas JJ
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):42-52. PubMed ID: 10779107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined myoelectric control in below-elbow amputees using artificial neural networks and a data glove.
    Sebelius FC; Rosén BN; Lundborg GN
    J Hand Surg Am; 2005 Jul; 30(4):780-9. PubMed ID: 16039372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models.
    Xie HB; Zheng YP; Guo JY; Chen X; Shi J
    Med Eng Phys; 2009 Apr; 31(3):384-91. PubMed ID: 18586548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless wearable controller for upper-limb neuroprosthesis.
    Wheeler CA; Peckham PH
    J Rehabil Res Dev; 2009; 46(2):243-56. PubMed ID: 19533538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural network controller for hydronic heating systems of solar buildings.
    Argiriou AA; Bellas-Velidis I; Kummert M; André P
    Neural Netw; 2004 Apr; 17(3):427-40. PubMed ID: 15037359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation.
    Mulcahey MJ; Betz RR; Smith BT; Weiss AA; Davis SE
    Arch Phys Med Rehabil; 1997 Jun; 78(6):597-607. PubMed ID: 9196467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.
    Ferrante S; Pedrocchi A; Iannò M; De Momi E; Ferrarin M; Ferrigno G
    Funct Neurol; 2004; 19(4):243-52. PubMed ID: 15776793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of neuromuscular stimulation for ambulation by complete paraplegics via artificial neural networks.
    Kordylewski H; Graupe D
    Neurol Res; 2001 Jul; 23(5):472-81. PubMed ID: 11474803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuro-control system for the knee joint position control with quadriceps stimulation.
    Chang GC; Luh JJ; Liao GD; Lai JS; Cheng CK; Kuo BL; Kuo TS
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):2-11. PubMed ID: 9086380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.