These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15588123)

  • 1. Effects of iodide on the fluorescence and activity of the hydroperoxyflavin intermediate of Vibrio harveyi luciferase.
    Huang S; Tu SC
    Photochem Photobiol; 2005; 81(2):425-30. PubMed ID: 15588123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase.
    Wei CJ; Lei B; Tu SC
    Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase.
    Moore C; Lei B; Tu SC
    Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of excitation transfer in the protein complex of bacterial luciferase hydroxyflavin and the associated yellow fluorescence proteins from Vibrio fischeri Y1.
    Petushkov VN; Gibson BG; Lee J
    Biochemistry; 1996 Jun; 35(25):8413-8. PubMed ID: 8679599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY; Szittner R; Friedman R; Meighen EA
    Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase.
    Jeffers CE; Nichols JC; Tu SC
    Biochemistry; 2003 Jan; 42(2):529-34. PubMed ID: 12525181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the functionalities of alphaGlu328 and alphaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(42):13866-73. PubMed ID: 16229475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase.
    Vetrova EV; Kudryasheva NS; Visser AJ; van Hoek A
    Luminescence; 2005; 20(3):205-9. PubMed ID: 15924327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of reduced flavin transfer from Vibrio harveyi NADPH-FMN oxidoreductase to luciferase.
    Lei B; Tu SC
    Biochemistry; 1998 Oct; 37(41):14623-9. PubMed ID: 9772191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
    Petushkov VN; Ketelaars M; Gibson BG; Lee J
    Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'-phosphate as a model.
    Lei B; Ding Q; Tu SC
    Biochemistry; 2004 Dec; 43(50):15975-82. PubMed ID: 15595854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence decay kinetics in the reaction of bacterial luciferase with different aldehydes.
    Ismailov AD; Sobolev AYu ; Danilov VS
    J Biolumin Chemilumin; 1990; 5(3):213-7. PubMed ID: 2220421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis of the binding of oxidized and reduced FMN cofactor to Vibrio harveyi NADPH-FMN oxidoreductase FRP apoenzyme.
    Li X; Chow DC; Tu SC
    Biochemistry; 2006 Dec; 45(49):14781-7. PubMed ID: 17144671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction.
    Macheroux P; Ghisla S; Hastings JW
    Biochemistry; 1993 Dec; 32(51):14183-6. PubMed ID: 8260504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of components of fluorescence spectra of mixtures by intensity- and anisotropy decay-associated analysis: the bacterial luciferase intermediates.
    Lee J; Wang YY; Gibson BG
    Anal Biochem; 1990 Mar; 185(2):220-9. PubMed ID: 2339779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.