These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15588325)

  • 1. Anti-Plasmodium activity of ceramide analogs.
    Labaied M; Dagan A; Dellinger M; Gèze M; Egée S; Thomas SL; Wang C; Gatt S; Grellier P
    Malar J; 2004 Dec; 3():49. PubMed ID: 15588325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosphingolipids in Plasmodium falciparum. Presence of an active glucosylceramide synthase.
    Couto AS; Caffaro C; Uhrig ML; Kimura E; Peres VJ; Merino EF; Katzin AM; Nishioka M; Nonami H; Erra-Balsells R
    Eur J Biochem; 2004 Jun; 271(11):2204-14. PubMed ID: 15153110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential new antimalarial chemotherapeutics based on sphingolipid metabolism.
    Pankova-Kholmyansky I; Flescher E
    Chemotherapy; 2006; 52(4):205-9. PubMed ID: 16675903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingolipid synthesis as a target for chemotherapy against malaria parasites.
    Lauer SA; Ghori N; Haldar K
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9181-5. PubMed ID: 7568097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [In vitro cultivation of Plasmodium falciparum. Applications and limits.- Methodology].
    Druilhe P; Gentilini M
    Med Trop (Mars); 1982; 42(4):437-62. PubMed ID: 6755144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity.
    Nallan L; Bauer KD; Bendale P; Rivas K; Yokoyama K; Hornéy CP; Pendyala PR; Floyd D; Lombardo LJ; Williams DK; Hamilton A; Sebti S; Windsor WT; Weber PC; Buckner FS; Chakrabarti D; Gelb MH; Van Voorhis WC
    J Med Chem; 2005 Jun; 48(11):3704-13. PubMed ID: 15916422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes.
    Palacpac NM; Hiramine Y; Mi-ichi F; Torii M; Kita K; Hiramatsu R; Horii T; Mitamura T
    J Cell Sci; 2004 Mar; 117(Pt 8):1469-80. PubMed ID: 15020675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid transport in Plasmodium.
    Haldar K
    Infect Agents Dis; 1992 Oct; 1(5):254-62. PubMed ID: 1344664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium falciparum: protein localization along a novel, lipid-rich tubovesicular membrane network in infected erythrocytes.
    Behari R; Haldar K
    Exp Parasitol; 1994 Nov; 79(3):250-9. PubMed ID: 7957747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the effect of retinol on Plasmodium falciparum in vitro.
    Hamzah J; Davis TM; Skinner-Adams TS; Beilby J
    Exp Parasitol; 2004; 107(3-4):136-44. PubMed ID: 15363939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes.
    Elmendorf HG; Haldar K
    J Cell Biol; 1994 Feb; 124(4):449-62. PubMed ID: 8106545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oleic acid is indispensable for intraerythrocytic proliferation of Plasmodium falciparum.
    Mi-Ichi F; Kano S; Mitamura T
    Parasitology; 2007 Nov; 134(Pt 12):1671-7. PubMed ID: 17610764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking effect of a biotinylated protease inhibitor on the egress of Plasmodium falciparum merozoites from infected red blood cells.
    Gelhaus C; Vicik R; Schirmeister T; Leippe M
    Biol Chem; 2005 May; 386(5):499-502. PubMed ID: 15927894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrase inhibitors. Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic sulfonamides: towards antimalarials with a novel mechanism of action?
    Krungkrai J; Scozzafava A; Reungprapavut S; Krungkrai SR; Rattanajak R; Kamchonwongpaisan S; Supuran CT
    Bioorg Med Chem; 2005 Jan; 13(2):483-9. PubMed ID: 15598570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of ceramide and sphingolipid metabolism in tumors: potential modulation of chemotherapy.
    Modrak DE
    Methods Mol Med; 2005; 111():183-94. PubMed ID: 15911980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterisation of the polyamine synthesis enzyme.
    Haider N; Eschbach ML; Dias Sde S; Gilberger TW; Walter RD; Lüersen K
    Mol Biochem Parasitol; 2005 Aug; 142(2):224-36. PubMed ID: 15913804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective effect of cell-permeable ceramide analogs against modeccin, ricin, Pseudomonas toxin, and diphtheria toxin.
    Oda T; Wu HC
    Exp Cell Res; 1995 Nov; 221(1):1-10. PubMed ID: 7589233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimalarial effect of N-acetyl-L-Leucyl-L-leucyl-L-norleucinal by the inhibition of Plasmodium falciparum Calpain.
    Jung SY; Zheng B; Choi YY; Soh BY; Kim SY; Park KI; Park H
    Arch Pharm Res; 2009 Jun; 32(6):899-906. PubMed ID: 19557368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mouse sphingomyelin synthase 1 as a suppressor of Bax-mediated cell death in yeast.
    Yang Z; Khoury C; Jean-Baptiste G; Greenwood MT
    FEMS Yeast Res; 2006 Aug; 6(5):751-62. PubMed ID: 16879426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG): antiparasitic activity of a PKG inhibitor.
    Diaz CA; Allocco J; Powles MA; Yeung L; Donald RG; Anderson JW; Liberator PA
    Mol Biochem Parasitol; 2006 Mar; 146(1):78-88. PubMed ID: 16325279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.